期刊文献+

增广Lagrangian的快速视频复原方法 被引量:1

Augmented Lagrangian based fast video restoration approach
原文传递
导出
摘要 针对单幅模糊图像复原的局限性和视频应用的广泛性,提出了一种基于时空体和增广Lagrangian的快速视频复原方法。首先对视频复原与图像复原的特征进行比较和分析,研究视频复原的三维解卷积操作,并对目前存在的视频复原方法的实现过程与性能进行分析和总结;然后在时空体的思想下,通过时空联合的各向同性全变分来控制时间误差和空间误差,并引入一种增广的Lagrangian方法完成全变分规整化的难题;最后通过求解Lagrangian形式的f子问题和u子问题实现全变分最小化难题,并对规整化过程中的参数进行研究与讨论,最终实现了视频的快速鲁棒复原。基于仿真图像和实际视频的实验结果表明,本文方法的性能在运行时间和视觉质量评价方面都要优于当前的其它方法,能够有效地实现图像和视频的快速复原。 Aiming at the limitation of single blur image restoration and the universality of video applica- tions, a fast and robust video restoration approach based on space-time volume and augmented Lagrang- Jan is proposed. Firstly, the characteristics of image restoration and video restoration are compared and analyzed,the three-dimensional deconvolution of video restoration operator is studied, and the realized process and performance of the existing video restoration methods are analyzed and summarized. And then,on the basis of the idea of space-time volume, the temporal error and spatial error is controlled through spatio-temporal isotropie total variation, and an augmented Lagrangian based method is intro- duced to implement the total variation regularization problem. Finally, the problem of total variation min- imization is achieved by solving the u sub-problem and f sub-problem in the form of Lagrangian,and the parameters are studied and discussed in the process of regularization, which achieves fast and robust vid- eo restoration at last. The experimental results based on both simulated images and real videos show that the performance of the proposed approach is superior to the current state of the art methods in the aspect of running time and several visual assessment indices,which can efficiently achieve the task of fast image and video restoration.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第11期2164-2169,共6页 Journal of Optoelectronics·Laser
关键词 视频复原 时空体 增广Lagrangian 时空全变分 交替方向法 video restoratiom space-time volume augmented Lagrangian spatio-temporal total varia- tion alternating direction method
  • 相关文献

参考文献21

  • 1袁红照,李晓峰,吴岳洲,程鹏.全景视频摄像机的非参数化几何校正与拼接[J].光电子.激光,2012,23(4):762-767. 被引量:9
  • 2姜柯,李艾华,崔智高,冯国彦,苏延召.CUDA架构下的高清视频实时校正及显示系统[J].光电子.激光,2013,24(5):982-989. 被引量:1
  • 3Ohan S,Khoshabeh R,Gibson K.et al An augmented La- grangian method for total variation video restoration[J] IEEE Transactions on Image Processing, 2011, 20 ( 11) : 3097-3111.
  • 4Belekos S,Galatsanos N, Katsaggelos A. Maximum a pos- teriori video super-resolution using a new multichannel image prior[J] IEEE Transactions on Image Processing. 2010,19(6) :1151-1,164.
  • 5Ng M K .Shen H,Lam E Y.et al. A total variation regulari- zation based super-resolution reconstruction algorithm for digital video[J], EURASIP Journal on Advances in Signal Processing. 2007.201)7( 71585 ) : 1-16.
  • 6Chart S, Nguyen T LCD motion blur: modeling, analysisand algorithm[J]. IEEE Transactions on Image Process- ing,2011,20(8) :2352-2365.
  • 7Jahne B. Spatio-temporal image processing: theory and scientific applications[M]. Berlin; Springer, 1993,73-75.
  • 8Shechtman E,Oaspi Y, Irani M. Space-time super-resolu- tion[J]. IEEE Transactions On Pattern Analysis And Ma- chine Intelligence,2005,27(4) : 531-545.
  • 9Wexler Y, Shechtman E, Irani M. Space-time completion of video[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(3) : 1-14.
  • 10Farsiu S, Elad M, Milanfar P. Video-to-video dynamic su- per-resolution for grayscale and color sequences [J]. EURASIP Journal on Advances in Signal Processing, 2006,2006(6) : 1859-1864,.

二级参考文献21

  • 1吴宪祥,郭宝龙,王娟.一种改进的序列图像自动排序算法[J].光电子.激光,2009,20(8):1114-1117. 被引量:5
  • 2曾吉勇,苏显渝,金国藩.基于双曲面折反射相机的柱面全景立体成像[J].光电子.激光,2006,17(6):728-732. 被引量:10
  • 3Swapna P,Krouglicof N,Gosine R.A novel technique for e stimating intrinsic camera parameters in geometric camera calibration[A].Proce.of the 23rd Canadian Conference on Elect rical and Computer Engineering (CCECE 2012)[C].2010,1-7.
  • 4Haixia W,Shuhan S,Xiao L.Comparison of the camera calibrat ion between photogrammetry and computer vision[A].Proce.of the 2012International Conference on System Scienc e and Engineering (ICSSE 2012)[C].2012,8-362.
  • 5Tsai R.A versatile camera calibration technique for high-ac curacy 3d machine vision metrology using off-the-shelf tv cameras and lenses[J].IEEE Journal of Robotics and Automati on,1987,3(4):323-344.
  • 6Zhang Z Y.A flexible new technique for camera calibration[ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
  • 7Milani P,Pedersini F.A dsp multiprocessor architecture for live camera calibration[A].Proce.of the 11th International Workshop on Image Analysis for Multimedia Interactive Service s (WIAMIS 2010)[C].2010,1-4.
  • 8ZHAO Xiao-chuan,LUO Qing-sheng,HAN Bao-ling,et al.An image d istortion correction algorithm based on quadrilateral fractal approach controlling points[A].Proce.of the 4th IEEE Conference on Industrial Electronics and Applications (ICIEA 2009) [C].2009,7-2672.
  • 9Melo R,Barreto J P,Falcao G.A new solution for camera cal ibration and real-time image distortion correction in medical endoscopy-initial technical evaluation[J].IEEE Transact ions on Biomedical Engineering,2012,59(3):634-644.
  • 10Lehmann T M,Gonner C,Spitzer K.Survey:int erpolation methods in medical image processing[J].IEEE Transactions on Medical Imaging,1999,18(11):1049-1075.

共引文献8

同被引文献25

  • 1Lustig M, Donoho D, Pauly J M. Sparse MRI :The applica- tion of compressed sensing for rapid MR imaging [J].Magnetic resonance in medicine, 2007, 58 (6): 1182- 1195.
  • 2Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI[J]. Signal Processing Magazine, IEEE, 2008, 25(2) :72-82.
  • 3Cands [J,Romberg J,Tao T, Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information[J]. Information Theory, IEEE Trans- actions on,2006,52(2) :489-509.
  • 4Donoho D L. Compressed sensing[J]. Information Theo- ry, IEEE Transactions on, 2006,52(4) : 1289-1306.
  • 5Hu Y, Zhang D, Ye J, et al. Fast and accurate matrix com- pletion via truncated nuclear norm regularization[J]. Pat- tern Analysis and Machine Intelligence,lEEE Transactions on,2013,35(9) :2117-2130.
  • 6Majumdar A, Ward R K, Aboulnasr T. Non-convex algo- rithm for sparse and low-rank recovery: Application to dynamic MRI reconstruction[J]. Magnetic Resonance Im- aging, 2013,31 (3) : 448-455.
  • 7Majumdar A,Ward R. Fast SVD free low-rank matrix re- covery:Application to dynamic MRI reconstruction[A]. Proc. of Medical Imaging, m-Health and Emerging Com- munication Systems (MedCom), 2014 International Con- ference on. IEEEr-C]. 2014,24-29.
  • 8Chandrasekaran V, Sanghavi S, Parrilo P A, et al. Rank- sparsity incoherence for matrix decomposition[J]. Socie- ty for Industrial and Applied Mathematics Journal on Opti-mization,2011,21 (2) :572-596.
  • 9Cands [J,Li X,Ma Y,et al. Robust principal component analysis[J]. Journal of the ACM (JACM) ,2011,58(3) : 1- 37.
  • 10Gao H, Rapacchi S, Wang D, et al. Compressed sensing using prior rank, intensity and sparsity model (PRISM): application in cardiac cine MRI[C], Proc, of the 20th An- nual Meeting of ISMRM, Melbourne, Australia, 2012, 2242.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部