期刊文献+

天然气井喷爆炸下深水平台钻台区响应分析 被引量:2

Response of the Drill Floor Equipment on Deepwater Platform to the Explosion after the Natural Gas Blowout
下载PDF
导出
摘要 针对天然气井喷爆炸后爆炸冲击波直接作用对象——钻台装备,采用TNT当量法及多物质耦合模型开展结构位移响应、超压响应及爆炸能吸收大小研究。研究结果表明,司钻房前舱壁钢板及玻璃中部偏左侧、就地工具房及就地电房前舱壁钢板中部为最大变形位置;钻台结构迎爆面连接部位较易发生破坏;司钻房后舱壁钢板比前舱壁钢板吸收更多塑性能,破坏更严重,且集中在连接部位;司钻房后舱壁连接部位等薄弱环节、结构最大变形位置为防爆设计重点考虑对象,可对其采取强化措施以达到优化防爆的目的。 The TNT equivalent method and multi-material coupled model are used to study the structural dis- placement response, overpressure response and explosion energy absorption of drill floor equipment-the direct ob- jects of the explosive blast of the natural gas blowout explosion. The results show that the maximum deformations oc- cur on the front bulkhead plate and central left glass of driller room, onsite tool house and the central front bulk- head plate of the electrical room. The connection part of the explosion side of the drill floor structure is prone to damage. The plastic energy absorbed by the back bulkhead plate of the driller room are greater than the front bulk- head plate, which results in more, serious damage and concentrated in connection areas. The weak points like the connection areas of the back bulkhead plate of the driller room and the maximum deformation position of the struc- ture are the critical targets of anti-explosion design. Strengthening measures should be taken to optimize the anti-ex- plosion design.
出处 《石油机械》 北大核心 2014年第11期83-87,92,共6页 China Petroleum Machinery
基金 国家"十二五"科技支撑计划项目"化学工业园区火灾防治技术研究"(2011BAK03B08) 山东省自然科学基金项目"LNG罐区火灾爆炸风险评价及应对策略研究"(ZR2011EL048) 中央高校基本科研业务费专项资金资助项目"插入式隔水管(RITT)深水井喷应急保障技术研究"(14CX06131A)
关键词 深水 天然气 井喷爆炸 钻台 位移响应 超压响应 爆炸能 优化防爆设计 deepwater natural gas blowout explosion equivalent TNT drill floor displacement re- sponse overpressure response explosive energy anti-explosion design optimization
  • 相关文献

参考文献8

  • 1Dadashzadeh M,Abbassi R,Khan F,et al.Explosion modeling and analysis of BP deepwater horizon accident[J].Safety Science,2013,57:150-160.
  • 2王珂,尹群,嵇春艳,苏艳艳.可燃气体泄漏爆炸下海洋平台数值仿真计算[J].海洋工程,2008,26(2):90-95. 被引量:8
  • 3Robertson N J,Fairlie G E,Draper E J.Gas explosion modelling and dynamic structural response[C]∥ERA Conference Major Hazards Offshore,London,UK,2000.
  • 4CROWL DA,LOUVAR JF.化工过程安全理论及应用[M].蒋军成,潘旭海,译.北京:化学工业出版社,2006:187-190.
  • 5石少卿,汪敏,孙波,等.AuTODYN工程动力分析及应用实例[M].北京:中国建筑工业出版社,2012:12-16.
  • 6Autodyn.Theory manual[Z].Century Dynamics,2005.
  • 7Baker W E.Explosion in air[M].Texas:University of Texas Press,Austin,1973.
  • 8Autodyn.User manual[Z].Century Dynamics,2005.

二级参考文献7

  • 1丁云,丁大玉,汤明钧.非理想爆源爆炸波的数值计算[J].爆炸与冲击,1995,15(4):289-299. 被引量:18
  • 2MSC.Dytran User Manual(version 2004)[M].MSC.Software Corporation,2004.
  • 3惠美洋严.液体体安全性研究[A].日本造船协会论文集[C].156.
  • 4Nurick G N,Olson M D,Fagnan J R,et al.Deformation and tearing of blast loaded stiffened square plates[J].Impact Engineering,1995,16:1-273.
  • 5Henrych J.The dynamic of explosion and itsuse[M].Printed in Czechoslo vakia,1979.
  • 6Roe P L.Approximate riemann solves,parameter vectors,and different schemes[J].Journal of Computational Physics,1981.
  • 7刘土光,朱科,郑际嘉.爆炸荷载下矩形板的塑性动力响应[J].爆炸与冲击,1992,12(2):166-169. 被引量:19

共引文献15

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部