期刊文献+

基于因子分析的模拟电路故障特征提取技术研究 被引量:3

Research on Feature Extraction for Diagnostics of Analog Circuit Based on Factor Analysis
下载PDF
导出
摘要 针对LS-SVM算法中小波提取特征存在小波基函数选择和小波分解层次、系数选取的问题,提出了一种基于因子分析技术的故障特征识别方法;该方法通过构建采样数据的相关矩阵求出因子载荷和因子得分,按照累计贡献率自动提取出1~3个因子组成特征向量,从而降低了输入维度,提高了算法训练诊断效率,降低了收敛难度;四运放典型电路的仿真实验结果表明:文中算法的诊断正确率超过了同类方法,同时提高了训练时间和诊断效率。 This paper presents a fault feature recognition method based on factor analysis techniques for wavelet feature extraction in LS-SVM algorithm existing problem of wavelet bases function selection,wavelet decomposition level and coefficient selection.The method computes factor loadings and factor scores by constructing a correlation matrix of sample data,extract factors 1-3to compose feature vector automatically according to the cumulative contribution rate,thereby reduce the dimension of the input,improve the efficiency of training and diagnostic algorithm,reduce the convergence difficulty.The simulation results of four op-amp biquad high-pass filter show:The diagnostic accuracy of the algorithm in this paper is beyond similar methods,while increasing the training time and the efficiency of diagnosis.
出处 《计算机测量与控制》 北大核心 2014年第11期3470-3472,共3页 Computer Measurement &Control
关键词 因子分析 故障特征 因子得分 特征向量 factor analysis fault feature factor score feature vector
  • 相关文献

参考文献9

  • 1Aminian M,Aminian F.Neural-network based analog-circuit fault diagnosis using neural transform as preprocessor[J].IEEE Trans.Circuits Syst.Ⅱ,2000,47 (2):51-156.
  • 2Long B,Tian S,Wang H J.Diagnostics of filtered analog circuits with tolerance based on LS_ SVM using frequency features[J].J Electron Test,2012,28 (3):291-300.
  • 3Aminian F,Aminian M,Collins H W.Analog fault diagnosis of actual circuits using neural networks[J].IEEE Trans.Instrum.Meas.,2002,51 (3):544-550.
  • 4王月海,程冉,蒋爱民,王彤威.模拟电路故障特征提取的小波基选取方法研究[J].计算机测量与控制,2011,19(6):1329-1330. 被引量:10
  • 5Long B,Tian S L,Miao Q,et al.Research on features for diagnostics of filtered analog circuits based on LS-SVM[J].IEEE Autotestcon.Baltimore,MD,2011,360-366.
  • 6张洪波,何怡刚,周炎涛,尹新,刘美容.主成分分析法与概率神经网络在模拟电路故障诊断中的应用[J].计算机测量与控制,2008,16(12):1789-1791. 被引量:20
  • 7Cui J,Wang Y R.A novel approach of analog circuit fault diagnosis using support vector machines classifier[J].Measurement.2011,44:281-289.
  • 8Nello Cristianini,John Shawe2Taylor.支持向量机导论[M].北京:机械工业出版社,2005.
  • 9Mangasarian O,Musicant D.Lagrangian support vector machines[J].Journal of Machine Learning Research,2001,1:161-177.

二级参考文献10

共引文献29

同被引文献32

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部