期刊文献+

基于混合高斯和帧间差分的机场跑道入侵检测 被引量:4

Runway Incursion Detection Based on Multi-Gaussian and Frame Differencing
下载PDF
导出
摘要 入侵机场跑道的威胁目标检测,难点在于算法的高精度和实时性。针对传统混合高斯背景差分运动目标检测算法自适应性较差的缺点,提出一种混合高斯背景差分与帧间差分相结合的运动目标检测算法,将帧间差分的结果反馈到混合高斯模型中,实现光线突变时高斯模型快速收敛,再进行图像后处理以获得精准的运动威胁目标。在Matlab仿真平台上进行实验,结果表明,提出的算法兼顾了检测的速度和精度,分别可达10-1秒级和像素级,满足了入侵机场跑道的威胁目标检测的需求,为机场终端区跑道入侵检测提供了有效的方法。 The difficulty of runway incursion lies in the accuracy and timeliness of the detection algorithm. A detection algorithm for motion objects proposed based on Gaussian mixes model and frame differencing. The increment of illumination supplied by the frames differencing is compensated to the Gaussian Mixture Model so the Gaussian Mixture Model can converge quickly, which can remedy the defect of the GMM when the illumination has jumping changes. Then, post-processing is done to get accurate motion objects. In the software development platform of Matlab7.1, comparative experiments Gaussian Mixture Mode[ background differencing method and the algorithm proposed by this paper are made. The simulation results show that this algorithm can detect the motion objects effectively and real- time.
作者 谭笑 柯泽贤
出处 《计算机仿真》 CSCD 北大核心 2014年第11期38-41,共4页 Computer Simulation
基金 国家重点基础研究发展计划资助项目(2010CB731801 2012CB719902) 国家自然科学基金青年项目(41201478)
关键词 帧间差分 混合高斯模型 背景更新 运动目标检测 跑道入侵 Frame differencing GMM Background updating Motion objects detection runway incursion
  • 相关文献

参考文献8

  • 1Steven D Young, Denise R Jones. Runway incursion andPreven- tion: A Technology. Solution[ C]. Athens, the International Federation of Airworthiness' 31st International Conference, 2001.
  • 2Radu I Siminiceanu, Gianfranco Ciardo. Formal Verificationof the NASA Runway Safety Monitor[ J]. International Journal on Soft- ware Tools for Technology. 2007-9:63-76.
  • 3David F Green Jr. Runway Safety Monitor Algorithm forRunway In- cursion Detection and Alerting[R]. NASA/CR-2002-211416, Virginia, NASA, 2001.
  • 4Wei Zhiqiang,Ji Xiaopeng,Wang Peng.Real-time moving object detection for video monitoring systems[J].Journal of Systems Engineering and Electronics,2006,17(4):731-736. 被引量:18
  • 5吕国亮,赵曙光,赵俊.基于三帧差分和连通性检验的图像运动目标检测新方法[J].液晶与显示,2007,22(1):87-93. 被引量:36
  • 6N Ohta. A statistical approach to background subtraction for sur- veillance systems [ J ]. International Cunfereneeun Computer Vi- sion, 2001-2:481-486.
  • 7Daniela Hall, et al. Comparison of target detection algarithms using adaptive background models [ J ]. International workshop on Performance evaluation of Tracking and Surveillance, Oct. 2005, 25 (5) : 564-577.
  • 8H Wang, D Suter. A reevaluation of mixture of Gaussian back- ground modeling [ video signal processing applications [ J ]. IEEE Proceedings of ICASSP'05, May 2005,2(2) : 1017-1020.

二级参考文献15

  • 1杨莉,李玉山,刘洋,张大朴.复杂背景下多运动目标轮廓检测[J].电子与信息学报,2005,27(2):306-309. 被引量:15
  • 2章毓晋.图像处理与分析[M].北京:清华大学出版社,2003..
  • 3Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video [C]//IEEE Workshop on Applications of Computer Vision, Princeton: IEEE Press, 1998:8-14.
  • 4Collins Retal. A system for video surveillance and monitoring: VSAM final report [R]. Pittsburgh, USA: Carnegie Mellon University, 2000.
  • 5Valera M,Velastin S A. Inteillgent distributed surveillance systems: a review [J]. IEE Proc. Vision. Image. Signal Process, 2005,152 (2): 192-204.
  • 6Barron J, Fleet D,Beauchemin S. Performance of optical flow techniques [J]. International J. Computer Vision,1994,12(1):42-77.
  • 7Arseneau S,Cooperstock J. Real-time image segmentation for action recognition [C]//Proc. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Canada: Victoria, 1999 : 86-89.
  • 8童念念,段晓辉.车辆自动监控系统的捕捉算法研究[C]//第一届全国智能视觉监控学术会议论文集,北京:中国科学院自动化研究所,2002.
  • 9Pratt William K.数字图像处理[M].北京:机械工业出版社,2005:327—336.
  • 10Neri A,Colonnese S, Russo G. Aotumatic moving object and background seperation [J]. IEEE Transactions On Signal Processing, 1998,10:219-232.

共引文献52

同被引文献28

  • 1肖敬文,余志,聂佩林,李熙莹,罗东华.基于几何与颜色特征的公交车辆视频检测算[J].中山大学学报(自然科学版),2005,44(A02):152-155. 被引量:5
  • 2SRIDHAR M,VAIDYA S,YAWAKIAR P. Intrusion detection using keystroke dynamics and :[uzzy logic member- ship {unctions[C] // Proceedings International Conference on Technologies for Sustainable Development. Switzer- land: Bridges Press, 2015,27 (4) = 444-458.
  • 3PARVAT T J, CHANDRA 12. Performance improvement of deep packet inspection for intrusion detection[C]//Pro ceedings 2014 IEEE Global Conference on Wireless Computing and Networking. [S. 1.] :IEEE Press,2014: 224-228.
  • 4PASTRANA S, TAPIAIX)R J E, ORFILA A. Defidnet: A framework for optimal allocation of cyberdefenses in in trusion detection networks[J]. Computer Networks, 2015,80 : 66-88.
  • 5MACDERMOTT A, SHI Q,KIFAYAT K. Collaborative intrusion detection in a federated cloud environment using the Dempster Sharer theory of evidence[C] // European Conference on Information Warfare and Security. ES. 1. 1." Earlybird Press, 2015,195-203.
  • 6PAN Zhiwen, HARIRI S, AI-NASHIF Y. Anomaly based intrusion detection for building automation and control networks[C]//Proceedings of IEEE/ACS International Conference on Computer Systems and Applications. Moroc- co: EasyChair Press, 2015 : 72-77.
  • 7刘鑫,刘辉,强振平,耿续涛.混合高斯模型和帧间差分相融合的自适应背景模型[J].中国图象图形学报,2008,13(4):729-734. 被引量:111
  • 8陈柏生,吴可沾,杨育辉.互联网用户安全登录平台设计[J].华侨大学学报(自然科学版),2011,32(6):638-640. 被引量:2
  • 9陈文,曹力,黄圣国.一种基于视频图像技术的跑道侵入检测方法[J].计算机仿真,2013,30(4):103-107. 被引量:3
  • 10潘卫军,许友水,康瑞.基于视频处理的机场跑道入侵检测模型的设计与实现[J].科学技术与工程,2013,21(28):8366-8372. 被引量:4

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部