期刊文献+

航空通信数据结构的脆弱点检查模型仿真

Simulation on Model of Vulnerabilities Examining for Air Communication Data Structure
下载PDF
导出
摘要 对航空通信数据结构进行鲁棒性检测,找到脆弱点对航空安全至关重要。航空通信数据与传统的通信数据不同,包含大量和飞行时产生的随机数据。由于通信数据结构处在不断变化中。传统的数据结构脆弱点检测中,以固定数据结构为前提,没有考虑航空数据结构实时变化造成的的干扰,存在严重的遮蔽效应,降低了航空通信数据结构脆弱点检测方法的准确性。提出了一种依据多维熵值航空通信数据结构的脆弱点检测模型,采用Filter-ary-Sketch及时存储航空通信数据结构信息,间隔一定周期进行基于多维熵值的航空通信数据结构脆弱点检测,若发现异常,按照Filter-ary-Sketch保存的通信数据结构信息定位脆弱点,检测出一个脆弱点,立即进行修正,再进行下一个脆弱点的检测,避免出现遮蔽效应,实现航空通信数据结构脆弱点的准确检测。实验结果说明,对比传统检测模型,所提模型具有较高的检测效率和精度,取得了较好的效果。 Robustness of data structure for aeronautical communications is essential for finding vulnerabilities in aviation safety. The paper proposed a vulnerability detection model based on the entropy of aeronautical communications multidimensional data structures. Filter-ary-Sketch was used to timely store the structure information of aeronautical communication data, the weak point detection based on the entropy of aeronautical communications multidimensional data structures was carried out for some interval period. If the abnormal was discovered, the vulnerabilities were located according to Filter-ary-Sketch information stored communication data structures, to detect a weak point and correct it immediately, then the next weak point was detected to avoid shadowing effect. The experimental results show that, compared with traditional detection model, the proposed model has higher detection efficiency and accuracy.
出处 《计算机仿真》 CSCD 北大核心 2014年第11期96-99,共4页 Computer Simulation
关键词 航空通信 数据结构 脆弱点 检查模型 Air communication Data structure vulnerability Examining model
  • 相关文献

参考文献5

二级参考文献22

  • 1林白,李鸥,刘庆卫.基于序贯变化检测的DDoS攻击检测方法[J].计算机工程,2005,31(9):135-137. 被引量:6
  • 2林白,李鸥,赵桦.基于源端网络的SYN Flooding攻击双粒度检测[J].计算机工程,2005,31(10):132-134. 被引量:6
  • 3孙知信,唐益慰,程媛.基于改进CUSUM算法的路由器异常流量检测[J].软件学报,2005,16(12):2117-2123. 被引量:27
  • 4陈伟,何炎祥,彭文灵.一种轻量级的拒绝服务攻击检测方法[J].计算机学报,2006,29(8):1392-1400. 被引量:26
  • 5Lakhina A, Crovella M, Diot C. Diagnosing network-wide traffic anomalies. In: Proc. of the 2004 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM Press, 2004. 219-230. http://portal.acm.org/citation.cfm?id=1015492.
  • 6Krishnamurthy B, Sen S, Zhang Y, Chcn Y. Sketch-Based change detection: Methods, evaluation, and applications. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. New York: ACM Press, 2003. 234-247. http://portal.acm.org/citation.cfm?id= 948236.
  • 7Schweller R, Li ZC, Chen Y, Gao Y, Gupta A. Reverse hashing for high-speed network monitoring: Algorithms, evaluation, and applications. In: Proc. of the 25th IEEE Int'l Conf. on Computer Communications. New York: IEEE, 2006. 1397-1408.
  • 8Dewaele G, Fukuda K, Borgnat P. Extracting hidden anomalies using sketch and non gaussian multiresolution statistical detection procedures. In: Proc. of the Int'l Multimedia Conf. of the 2007 Workshop: Large Scale Attack Defense. New York: ACM Press, 2007. 145-152. http://portal.acm.org/citation.cfm?id=1352664.1352675.
  • 9Muthukrishnan S. Data streams: Algorithms and applications. 2007. http://www.cs.rutgers.vdu/-muthu/stream-1-1.ps.
  • 10Lawrence C J, Wegman MN. Universal classes of hash functions. Journal of Computer and System Sciences, 1979,18(2): 143-154.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部