期刊文献+

改进的光伏发电系统MPPT预测算法的研究 被引量:7

The Reasch of an Improved GA-BP Neural Network in MPPT Predict Algorithm of Photovoltaic Generation System
下载PDF
导出
摘要 在光伏发电效率预测的研究中,针对光伏供电系统受温度和光照变化影响大、太阳能利用效率低和最大功率点预测不准确等问题,提出一种改进的GA-BP神经网络的光伏系统MPPT预测算法,通过优化的BP神经网络训练光伏阵列实测数据,预测输出的最大功率。为提高算法预测精度,采用云模型云滴和遗传算法优化BP神经网络的初始权值和阀值,根据遗传算法收敛程度来调整云自适应交叉和变异算子。经Matlab仿真分析,在光照和温度变化时,改进的GA-BP神经网络比GA-BP神经网络和BP神经网络具有更好的预测效果。 For the problem of the changes of temperature and illumination having great influence on PV array output power, the low efficiency of solar energy utilization and difficult prediction of maximum power point, we propose an improved GA-BP neural network in MPPT algorithm for photovoltaic system to predict maximum power output by optimizing BP neural network to training the photovoltaic array measured data. In order to improve the prediction precision of the algorithm, the initial weights and threshold of the BP neural network are optimized by using the cloud model cloud droplets and genetic algorithm, and the cloud adaptive crossover and mutation operators are adjusted according to the convergence degree of genetic algorithm. Through Matlab simulation analysis, the improved GA-BP neural network has better tracking performance than GA-BP and BP neural networks during the change of the light and tempreture.
作者 石俊 陈丁
机构地区 九江学院
出处 《计算机仿真》 CSCD 北大核心 2014年第11期127-131,共5页 Computer Simulation
基金 江西省科技厅青年基金科技项目(20132BAB211038)
关键词 光伏阵列 神经网络 遗传算法 最大功率点跟踪 云模型 PV array Neural network Genetic algorithm MPPT Cloud model
  • 相关文献

参考文献8

二级参考文献58

共引文献230

同被引文献69

  • 1侯文.对应用主成分法进行综合评价的探讨[J].数理统计与管理,2006,25(2):211-214. 被引量:47
  • 2K S Tey, S Mekhilef. Modified incremental conductance MPPT al- gorithm to mitigate inaccurate responses under fast - changing solar irradiation level[ J]. Solar Energy, 2014,101:333 - 342.
  • 3K Ishaque, et al. Modehng and simulation of photovohaic ( PV ) system during partial shading based on a two - diode model [ J ]. Simulation Modeling Practice and Theory, 2011, 19 (7): 1613 - 1626.
  • 4Syafaruddin, E Karatepe, T Hiyama. Artificial neural network - polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions[J]. IET Renew- able Power Generation, 2009,3 (2) :239 - 253.
  • 5B N Alajmi, et al. Fuzzy logic - control approach of a modified hill - climbing method for maximum power point in micro - grid stan- dalone photovoltaic system[J]. IEEE Transactions Industrial Elec- tronics, 2011,26(4) : 1022 - 1030.
  • 6M Miyatake, et al. Maximum power point tracking of multiple pho- tovoitaic arrays: a PSO approach[J].IEEE Transactions on Aero- space and Electronic Systems, 2011,47 ( 1 ) :367 - 380.
  • 7F Ghani, et al. The numerical calculation of single - diode solar - cell modeling parameters [ J ]. Renewable Energy, 2014,72 : 105 - 112.
  • 8A Maki, S Valkealahti. Power losses in long string and parallel - connected short strings of series - connected silicon - based pho- tovohaic modules due to partial shading conditions [ J ]. IEEE Transactions on Energy Conversion, 2012,27( 1 ) : 173 -183.
  • 9佘世杰,何慧诺.光伏水泵系统中CVT及MPPT控制比较[J].太阳能学报,2006,33(6) :25-31.
  • 10周林,武剑,栗秋华,郭珂.光伏阵列最大功率点跟踪控制方法综述[J].高电压技术,2008,34(6):1145-1154. 被引量:268

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部