期刊文献+

基于多尺度分析的地基云图自动识别的研究 被引量:8

Research on Recognition of Ground-Based Cloud Images Based on Multi-Scale Analysis
下载PDF
导出
摘要 研究地基云图自动识别问题。地基云图由于受光照旋转等影响,传统方法提取的特征难以准确描述图像特征,导致地基云图识别的精度较低,还无法达到实际应用的要求。为了提高地基云图识别精度,提出采用多尺度分析的地基云图自动识别算法。首先将地基云图划分为若干个大小相同互不重叠的子图,然后采用三种不同尺度的权重局部二值模式提取每一幅子图的纹理特征,最后将子图的纹理特征顺序排列获取最终鉴别特征。通过对积雨云,高积云和层积云三类地基云图进行分类识别,实验结果表明改进方法可以增强云图的局部特征描述能力,有效提高地基云图分类的精度。 This paper studied the problem of ground-based cloud images recognition. Due to the effects of light and rotation, It is difficult for the traditional method to describe the features of images accurately, resulting in lower recognition of ground-based images. In the paper, cloud images were first ivided into a number of non-overlapping sub-graphs with the same size, then three different scales of weights local binary pattern were used to extract the texture feature of each parcel sub-graph. Finally, the texture features of each sub-graph were combined to obtain the final identification feature set. The recognition experimental results of cumulonimbus, altocumulus and stratocumulus show that the proposed method can get better partial characterization capabihty of cloud images and improve the accu- racy of the classification of ground-based cloud images.
出处 《计算机仿真》 CSCD 北大核心 2014年第11期212-216,共5页 Computer Simulation
基金 公益性行业(气象)科研专项(GYHY201306015) 国家自然科学基金资助项目(61375030)
关键词 云图分类 纹理特征 局部二值模式 多尺度分析 Cloud image classification Texture features Local binary pattern Multi-scale analysis
  • 相关文献

参考文献12

  • 1朱彪,杨俊,吕伟涛,陈丽英,马颖,姚雯,张义军.基于KNN的地基可见光云图分类方法[J].应用气象学报,2012,23(6):721-728. 被引量:17
  • 2K A Buch, C H Sun, L R Thorne. Cloud classification using whole -sky imager data[ C ]. Proceedings of the ninth Symposium on Me- teorological observation and Instrumentation. Chorlotte, North Carolina, 1995:353-358.
  • 3Josep Calbo, Jeff Sabburg. Feature extraction from whole- sky ground-based images for cloud-type recognition [ J]. Journal of Atmospheric and Oceanic Technology, 2008,25( 1 ) :3-14.
  • 4Chen Xiaoying, Zhen Junjie. On the application of BEMD and Tamura textural feature for recognizing ground-based cloud [ C ]. Computer Application and System Modeling (ICCASM), 2010 In- ternational Conference on. IEEE, 2010,12 :V12-61-V12-65.
  • 5A Heinle, A Macke, A Srivastav. Automatic cloud classification of whole sky images[J]. Atmospheric Measurement Techniques Dis- cussions, 2010,3( 1 ) :269-299.
  • 6Li Yang, et al. Recognition of stratiform/cumuliform cloud based on GK fuzzy clustering and SVM [ C ]. Natural Computation ( IC- NC), 2011 Seventh International Conference on. IEEE, 2011,3 : 1673-1676.
  • 7S Liao, M W K Law, A C S Chung. Dominant local binary pat- terns for texture classification[ J]. Image Processing, IEEE Trans- actions on, 2009,18(5) :1107-1118.
  • 8T Ahonen, A Hadid, M Pietikainen. Face description with local binary patterns: Application to face recognition [ J]. Pattern Anal- ysis and Machine Intelligence, IEEE Transactions on, 2006,28 (12) :2037-2041.
  • 9孙学金,陈峰,刘磊,胡渝宁,赵世军.阈值与纹理相结合的云识别方法[J].解放军理工大学学报(自然科学版),2011,12(4):397-402. 被引量:5
  • 10王连加.基于PCA-LBP特征的掌纹识别研究[J].计算机仿真,2010,27(11):254-257. 被引量:7

二级参考文献68

共引文献28

同被引文献50

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部