期刊文献+

基于机器学习的地震异常数据挖掘模型 被引量:11

The Seismic Anomaly Data Mining Model Based on Machine Learning
下载PDF
导出
摘要 研究基于机器学习的地震异常数据挖掘方法。在进行地震异常数据挖掘过程中,由于地震监测系统信号时变性及监测环境的不稳定性,采用传统的方法进行挖掘,其挖掘的精确度较低。为此,提出基于机器学习的地震异常数据挖掘方法。根据机器学习的相关理论获取标准方程组和最小均方误差值,实现异常数据挖掘最优模型的构建,通过计算数据的特征向量,建立地震监测数据特征库,依据获取的概率值实现对监测数据的正确判断,从而完成对地震异常数据的有效挖掘。实验结果表明,利用基于机器学习的地震异常数据挖掘方法,能够有效的提高地震异常数据的挖掘准确度与挖掘效率,保证了地震监测系统的有效性。 Research on seismic anomaly data mining method based on machine learning. In seismic anomaly data mining process, because of the earthquake monitoring system signal time-varying instability and monitoring environment, the traditional approach to mining, the mining accuracy is low. For this, put forward an abnormal data mining method based on machine learning. Based on the related theory of machine learning for standard equations and minimum mean square error values, to achieve optimum abnormal data mining model building, through calculating the data of characteristic vector and the earthquake monitoring data in feature library, based on the monitoring data of probability value to obtain the correct judgment, thus accomplishes the effective mining of earthquake anomaly data. The experimental results show that the use of seismic anomaly data mining method based on machine learning, and effectively improved the accuracy of seismic anomaly data mining and the mining efficiency, ensure the effectiveness of the earthquake monitoring system.
出处 《计算机仿真》 CSCD 北大核心 2014年第11期319-322,共4页 Computer Simulation
基金 廊坊市科学技术局(2012011034) 中央高校基本科研业务费专项资金(ZY20130212)
关键词 机器学习 地震监测 异常数据挖掘 Machine learning Earthquake monitoring Abnormal data mining
  • 相关文献

参考文献9

二级参考文献116

  • 1赵军产,陆君安,吴晓群.一般复杂动力网络的优化牵制控制[J].中国科学:信息科学,2010,40(6):821-830. 被引量:5
  • 2黄林军,张勇,郭冰榕.机器学习技术在数据挖掘中的商业应用[J].中山大学学报论丛,2005,25(6):145-148. 被引量:15
  • 3褚建立,陈步英.基于数据挖掘的机械设备故障诊断的研究[J].微计算机信息,2007,23(19):208-209. 被引量:13
  • 4Dietterich T G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 2000, 40(2): 139-157.
  • 5Ali K M, Pazzani M J. Error reduction through learning multiple descriptions. Machine Learning, 1996, 24(3): 173-202.
  • 6Stanfill C, Waltz D. Toward memory-based reasoning. Communications of the ACM, 1986, 29(12): 1213-1228.
  • 7Blake C, Keogh E, Merz C J. UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, CA, 1998.http://www.ics.uci.edu/-mlearn/MLRepository.html.
  • 8Ho T K. Nearest neighbors in random subspaces. In Lecture Notes in Computer Science 1451, Amin A, Dori D, Pudil P,Freeman H (otis.), Berlin: Springer, 1998, pp.640-648.
  • 9Bay S D. Combine nearest neighbor classifiers through multiple feature subsets. In Proc. the 15th International Conference on Machine Learning, Madison, MI, 1998, pp.37-45.
  • 10Alkoot F M, Kittler J. Moderating k-NN classifiers. Pattern Analysis & Applications, 2002, 5(3): 326-332.

共引文献21

同被引文献95

引证文献11

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部