期刊文献+

半E-预不变凸模糊数值函数的判定

Semi-E-preinvex Fuzzy-valued Functions Judge Theorems
原文传递
导出
摘要 模糊凸性和模糊广义凸性在模糊数学中起着非常重要的作用。并且模糊数值函数是模糊分析学的重要组成部分,对它的研究在模糊数学的发展中有着举足轻重的地位。本文在模糊分析学的基础上进一步推广预不变凸模糊数值函数,利用新定义的模糊数值函数上、下半连续性,在一种新序意义下讨论了半E-预不变凸模糊数值函数的若干判定定理。 Fuzzy convexity and fuzzy generalized convexity play a very important role in fuzzy optimization theory. Fuzzy-valued func- tions is important parts of Fuzzy analysis, Research on it has holds an important place in the development of fuzzy mathematics. In this paper, on the basis of fuzzy analysis further promote constant convex fuzzy-valued function. This paper based on the ordering of new fuzzy numbers proposed by Goetschel, the definition of upper (lower) semicontinuity of fuzzy-valued function is given, and some judge theorems are obtained.
作者 张贞 刘学文
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期5-8,共4页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金项目(No.11001289) 重庆市教委科研项目(No.KJ100608)
关键词 半E-预不变凸 模糊数值函数 上半连续 下半连续 semi-E-preinvex fuzzy-valued functions upper semicontinuity lower semicontinuity.
  • 相关文献

参考文献10

  • 1Nanda S, Kar K. Convex fuzzy mappings[J]. Fuzzy Sets and Systems,1992,48(1) :129-132.
  • 2Syau Y R. Generalization of preinvex and B-vex fuzzy map- pings[J]. Fuzzy Sets and Systems,2001,120(3) :533-542.
  • 3Panigrahi, Panda G, Nanda S. Convex fuzzy mappings with differentiability and its application in fuzzy optimization [J]. European Journal of Operational Research, 2008,185 (1) :47-62.
  • 4Noor M A. Fuzzy preinvex functions[J]. Fuzzy Sets and Systems, 1994,64(1) :95-104.
  • 5Youness E A. E-convex sets, E-convex function, and E-con- vex programming[J]. European Journal of Operational Theory and Applications, 1999,102(2) : 439-450.
  • 6Wu Z Z,Xu J P. Generalization convex fuzzy mappings and fuzzy variational-like inequality [J]. Fuzzy Sets and Sys tems,2009,160(ll):1590-1619.
  • 7Zadeh L A. Fuzzy set[J]. Inform and Control,1965,8(3) 338- 353.
  • 8吴从忻 马明.模糊分析学基础[M].北京:国防工业出版社,1991..
  • 9Goetschel J R, Voxman W. Elementary fuzzy calculus[J]. Fuzzy Sets and Systems, 19 g6,18 ( 1 ) : 31-4 3.
  • 10Fulga C, Preda V. Nonlinear programming with E-prein- vex and local E-preinvex funetion[J]. European Journal of Operational Research,2009,192(3) :737 -743.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部