期刊文献+

矩阵Hadamard积最小特征值的新界值估计 被引量:3

New Bound on the Minimum Eigenvalue of the Hadamard Product of Matrices
原文传递
导出
摘要 设A和B是非奇异M矩阵,给出B和A-1的Hadamard积的最小特征值的新界值估计,设矩阵A=(aij)和B=(bij)都为非奇异M矩阵,A-1=(βij),则有τ(BA-1)≥min i≠j12{βiibii+βjjbjj-[(βiibii-βjjbjj)2+4sisjβiiβjj(bii-τ(B))(bjj-τ(B))]12}。估计式仅依赖矩阵的元素,易于计算。数值例子表明所得新估计式改进了现有的一些结果。 If A and B are nonsingular M matrices. A new bound on the minimum eigenvalue of the Hadamard product for B and A-1 is given. LetA=(ailj)and B= (bij)are nonsingular M matrices,A 1 = (βij). We have r(B°A^-1)≥ min i≠j1/2{βiibii+βjjbjj-[(βiibii-βjjbjj)^2+4sisjβiiβjj(bii-τ(B))(bjj-τ(B))]^1/2}. The bound is easier to calculate since they only depend on the entries of matrices. Finally, the numerical example shows that the bound improves some estimating results.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期54-57,共4页 Journal of Chongqing Normal University:Natural Science
基金 河南省科技计划项目(No.112300410191) 河南省教育厅自然科学项目(No.13B520945) 河南城建学院校科学研究项目(No.2014JYB018)
关键词 M矩阵 HADAMARD积 最小特征值 M matrix Hadamard product the minimum eigenvalue
  • 相关文献

参考文献9

二级参考文献28

  • 1丁树良.两个非负定阵的Hadamard积的估计[J].江西师范大学学报(自然科学版),1994,18(3):212-217. 被引量:2
  • 2FIEDLER M, MARKHAM T L. An inequality for the Hadamard product of an M matrix and inverse M matrix [ J]. Linear Algebra Appl, 1988, 101:1 -8.
  • 3YONG X R, WANG Z. On a conjecture of Fiedler and Markham [ J]. Linear Algebra Appl, 1999, 288:259 -267.
  • 4YONG X R. Proof of a conjecture of Fiedler and Markham [J]. Linear Algebra Appl, 2000, 320:167 - 171.
  • 5游兆永.非奇异M矩阵[M].武汉:武汉工学院出版社,1981.
  • 6HORN R A, JOHNSON C R. Topics in Matrix Analysis [M]. New York: Cambridge University Press, 1991.
  • 7HUANG R. Some inequalities for the Hadamard product and the Fan product of matrices [J]. Linear Algebra Appl, 2008, 428:1551 -1559.
  • 8LI Y T, LI Y Y, WNAG R W, et al. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices [J]. Linear AlgebraAppl, 2010, 432:536-545.
  • 9LI Y T, CHEN F B, WANG D F. New lower bounds on eigenvalue of the Hadamard product of an bl matrix and its inverse [J]. Linear Algebra Appl, 2009, 430:1423 - 1431.
  • 10BERMAN A, PLEMMONS R J. Nonnegative Matrices in the Mathematical Sciences [ M ]. New York: Academic Press, 1979.

共引文献17

同被引文献6

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部