摘要
设A和B是非奇异M矩阵,给出B和A-1的Hadamard积的最小特征值的新界值估计,设矩阵A=(aij)和B=(bij)都为非奇异M矩阵,A-1=(βij),则有τ(BA-1)≥min i≠j12{βiibii+βjjbjj-[(βiibii-βjjbjj)2+4sisjβiiβjj(bii-τ(B))(bjj-τ(B))]12}。估计式仅依赖矩阵的元素,易于计算。数值例子表明所得新估计式改进了现有的一些结果。
If A and B are nonsingular M matrices. A new bound on the minimum eigenvalue of the Hadamard product for B and A-1 is given. LetA=(ailj)and B= (bij)are nonsingular M matrices,A 1 = (βij). We have r(B°A^-1)≥ min i≠j1/2{βiibii+βjjbjj-[(βiibii-βjjbjj)^2+4sisjβiiβjj(bii-τ(B))(bjj-τ(B))]^1/2}. The bound is easier to calculate since they only depend on the entries of matrices. Finally, the numerical example shows that the bound improves some estimating results.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第6期54-57,共4页
Journal of Chongqing Normal University:Natural Science
基金
河南省科技计划项目(No.112300410191)
河南省教育厅自然科学项目(No.13B520945)
河南城建学院校科学研究项目(No.2014JYB018)