期刊文献+

单偏振半导体光放大器扫频光相干成像系统 被引量:6

Optical Coherence Imaging System Based on a Polarization-Dependent Semiconductor Optical Amplifier-Enabled Swept Laser
原文传递
导出
摘要 搭建完成了基于单偏振半导体光放大器扫频光源的光相干成像系统,此系统可以实现高速光相干层析成像与光相干显微成像。系统中的扫频光源使用偏振相关的半导体光放大器作为放大单元,该光放大器有着增益谱宽大、输出功率高的优点,使得光源仅使用一个放大器即可获得合适的增益谱宽与输出功率,并可采用傅里叶域锁模技术大幅提高其扫频速率。采用傅里叶域锁模技术时,扫频光源输出功率达到32 mW左右,有效扫描频率为45kHz,输出光谱的中心波长为1326nm,光谱宽度为115nm。利用系统进行高速光相干层析成像时,横向分辨率为9μm,纵向分辨率为12.9μm左右,灵敏度为105dB。利用系统进行光相干显微成像时,可以清楚地看到洋葱内表皮细胞的结构。 As noninvasive biomedical imaging techniques, optical coherence tomography (OCT) and optical coherence microscopy have good application prospects in future. A swept-source imaging system based on a polarization-dependent semiconductor optical amplifier (SOA) enabled Fourier domain mode locked laser (FDML) is demonstrated, which can be used for the two imaging techniques mentioned above. The FDML with a polarization- dependent SOA generates ~32 mW output power at 45 kHz sweep rates, with a tuning range of 115 nm centered at 1326 nm. Because of the broad bandwidth and high saturation power of the polarization-dependent SOA, the laser has the advantage of simple structure. It uses only one SOA for operating with enough bandwidth and output power. Using the SOA-enabled FDML laser, an OCT system with axial resolution of ~ 12.9μm, transverse spot size of 9 μm and sensitivity of 105 dB is achieved. The structure of the epidermal cells of onion can be observed by this imaging system.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第11期10-16,共7页 Chinese Journal of Lasers
基金 清华大学电子工程系传信基金
关键词 相干光学 傅里叶域锁模结构光源 光相干层析 光相干显微镜 半导体光放大器 coherence optics Fourier domain mode locked laser optical coherence tomography optical coherencemicroscopy semiconductor optical amplifier
  • 相关文献

参考文献21

  • 1G Ripandelli, A M Copp6, A Capaldo, et al: Optical coherence tomography[J]. Seminars in Ophthalmology, 1998, 13 (4): 199-202.
  • 2M Wojtkowski, T Bajraszewski, P Targowski, el al: Real-time in vivo imaging by high-speed spectral optical coherence tomography[J]. Opt Lett, 2003, 28(19): 1745-1747.
  • 3M R Hee, J A Izatt, E A Swanson, et al: Optical coherence tomography of the human retina[J]. Archives of Ophthalmology, 1995, 113(3): 325-332.
  • 4J Welzel. Optical coherence tomography in dermatology: a review [J]. Skin Research and Technology, 2001, 7(1): 1-9.
  • 5J Sanz, Z A Fayad. Imaging of atheroselerotic cardiovascular disease[J]. Nature, 2008, 451(1181): 953-957.
  • 6D Huang, E A Swanson, C P Lin, et al: Optical coherence tomography[J]. Science, 1991, 254(5035): 1178 -1181.
  • 7J F D Boer, B Cense, B H Park, et al: Improved signal-to-noise ratio in spectral-domain comparedwith time-domain optical coherence tomography [ J]. Opt Lett, 2003, 28 ( 21 ) 2067-2069.
  • 8R Huber, M Wojtkowski, K Taira, et al: Amplified, frequency swept lasers for frequency domain reflectometry and OCTimaging: design and scaling principles[J]. Opt Express, 2005, 13 (9) : 3513-3528.
  • 9R Huber, M Wojtkowski, J G Fujimoto. Fourier domain mode locking (FDML): A newlaser operating regime and applications foroptical coherence tomography[J]. Opt Express, 2006, 14 (8) : 3225-3237.
  • 10R Huber, D C Adler, J G Fujimoto. Buffered Fourierdomain mode locking: Unidirectional swept laser sources foroptical coherence tomography imaging at 370,000 lines/s[J]. Opt Lett, 2006, 31(20) : 2975-2977.

二级参考文献36

  • 1李相银, 姚敏玉, 李卓 等. 激光原理技术与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004.
  • 2A. F. Fercher, W. Drexler, C. K. Hitzenberger et al.. Optical coherence tomography-principles and applications[J]. Rep. Prog. Phys., 2003, 66(2): 239-303.
  • 3B. Liu, M. E. Brezinski. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography[J]. J. Biomed. Opt., 2007, 12(4): 044007.
  • 4K. Wang, Z. Ding, T. Wu et al.. Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system[J]. Opt. Express, 2009, 17(14): 12121-12131.
  • 5S. R. Chinn, E. A. Swanson, J. G. Fujimoto. Optical coherence tomography using a frequency-tunable optical source[J]. Opt. Lett., 1997, 22(5): 340-342.
  • 6R. Huber, M. Wojtkowski, K. Taira et al.. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Opt. Express, 2005, 13(9): 3513-3528.
  • 7R. Huber, M. Wojtkowski, J. G. Fujimoto. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography[J]. Opt. Express, 2006, 14(8): 3225-3237.
  • 8C. M. Eigenwillig, W. Wieser, B. R. Biedermann et al.. Subharmonic Fourier domain mode locking[J]. Opt. Lett., 2009, 34(6): 725-727.
  • 9M. Y. Jeon, J. Zhang, Q. Wang et al.. High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs[J]. Opt. Express, 2008, 16(4): 2547-2554.
  • 10Minghui Chen, Zhihua Ding, Lei Xu et al.. All-fiber ring-cavity based frequency swept laser source for frequency domain OCT[J]. Chin. Opt. Lett., 2010, 8(2): 202-205.

共引文献10

同被引文献64

  • 1李翠华,王巍,张俊杰.光纤陀螺低温快速启动技术[J].中国惯性技术学报,2007,15(2):237-240. 被引量:8
  • 2李大禹,穆全全,胡立发,曹召良,鲁兴海,宣丽.液晶空间光调制器相位调制的色散特性研究[J].光子学报,2007,36(6):1065-1067. 被引量:11
  • 3R S Jonnal, J R Beseeker, J C Derby, et al.. Imaging outer segment renewal in living human cone photoreceptors[J]. Opt Express, 2010,18(5): 5257-5270.
  • 4S Schmitz-Valckenberg, M Fleckenstein, H P Scholl, et al.. Fundus autofluorescence and progression of age related macular degeneration [J]. Surv Ophthalmol, 2009, 54(1): 96-1 17.
  • 5J Z Liang, B Grimm, S Goelz, et al.. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave- front sensor[J]. JOSA A, 1994, 11(7): 1949-1957.
  • 6J Z Liang, D R Williams, D T Miller. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. JOSA A, 1997, 14(11): 2884-2892.
  • 7Y Tatsuo, M Toshifumi, K Yoshiyuki, et al.. Adaptive optics dioptric scanning ophthalmoscope with a wider field of view similar to those of normal ophthalmoscopes[J]. Opt Lett, 2012, 37(13): 2496-2498.
  • 8J Thaung, P Knutsson, Z Popovic, et al.. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging[J]. Opt Express, 2009, 17(6): 4454-4467.
  • 9D X Hammer, R D Ferguson, A H Patel, et al.. Angiography with a multifunctional line scanning ophthalmoscope[J]. J Biomed Opt, 2012, 17(2): 026008.
  • 10F Felberer, J Kroisamer, C K Hitzenberger, et al.. Lens based adaptive optics scanning laser ophthalmoscope[J]. Opt Express, 2012, 20 (16): 17297-17310.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部