期刊文献+

融合深度信息的室内RGB图像视觉显著物体快速检测方法 被引量:10

An Indoor Object Fast Detection Method Based on Visual Attention Mechanism of Fusion Depth Information in RGB Image
原文传递
导出
摘要 针对传统视觉注意机制在室内三原色(RGB)图像视觉显著物体检测中存在的运算复杂、检测精度低等缺点,提出了一种融合深度信息的室内RGB图像视觉显著物体快速检测方法。对室内RGB图像进行降采样和金字塔量化处理,从而降低图片的空间分辨率和计算复杂度。利用亮度、红绿以及黄蓝三通道的多特征视觉注意机制显著性检测模型以获得室内RGB图像的显著图。在显著图分析中提出显著区域生长策略,从而获得视觉显著区域的精确轮廓。融合深度信息获取视觉显著区域内显著物体数目以及显著物体相互之间的位置关系。通过室内场景实验,验证了方法的可行性和有效性。 The traditional visual attention mechanism is complex and rough-detection for visual saliency detection indoor red-green-blue(RGB)image.In order to overcome these defects,a new fast visual saliency object detection method based on fusion depth information on indoor RGB image is proposed.A certain scale image is obtained by subsampling and pyramid-quantization to reduce the spatial resolution of the images so as to decrease the computational complexity.The intensity,red-green and yellow-blue three-channel features visual attention mechanism significant detection model is proposed to acquire saliency map.The saliency growing strategy is proposed to acquire the precise saliency region in the saliency analysis.The fusion depth information is utilized to detect the objects in salient region.The feasibility and effectiveness of the algorithm is verified in indoor detection experiments.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第11期205-210,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(51175087) 福建省杰出青年基金(2013J06013) 福建省海外留学基金
关键词 机器视觉 注意机制 显著区域 检测 machine vision attention mechanism significant region detection
  • 相关文献

参考文献16

  • 1H Masuzawa, J Miura. Observation planning for efficient environment information summarization [ C ]. IEEE RSJ International ('onference on Intelligent Robots and Systems, 2009. 5794 5800.
  • 2S Ekvall, D Kragic. Receptive field cooccurrence histograms for object detection [ C]. IEEE RSJ International Conference on Intelligent Robots and Systems. 2005. 84-89.
  • 3C Choi. H I Christensen. Cognitive vision for efficient scene processing and object categorization in highly cluttered environments [ C]. IEEE RSJ International Conference on Intelligent Robots and Systems, 2009. 4267-4274.
  • 4K A Ehinger, S B Hidalgo, A Torralba, et al: Modelling search for people in 900 scenes: A combined source model of eye guidance[J]. Visual Cognition, 2009, 17(6-7): 945-978.
  • 5A Borji, D N Sihite, L hti. Quantitative analysis of human- model agreement in visual saliency modeling: A comparative study[J]. IEEE Transactions on Image Processing, 2013, 22 (1) : 55-69.
  • 6张立保,王鹏飞.高分辨率遥感影像感兴趣区域快速检测[J].中国激光,2012,39(7):204-208. 被引量:15
  • 7A Borji, L Itti. State-of-the-art in visual attention modeling[J] IEEE Transactions on Pattern Analysis and Machine Intelligence 2013, 35(1): 185-207.
  • 8D Walther. Color Opponencies for Bottom-up Attention[D] Pasadena: California Institute of Technology, 2006. 98-99.
  • 9王卫华,李志军,何艳,等.一种基于兴趣区提取的红外搜索系统目标实时检测算法[J].中国激光,2013,39(ii):1109001.
  • 10J Theeuwes. Feature-based attention: It is all bottom-up priming[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1628): 20130055.

二级参考文献22

共引文献38

同被引文献51

  • 1郑成勇,李红.基于局部灰度特性分析的红外目标检测方法[J].红外与激光工程,2004,33(4):362-365. 被引量:8
  • 2刘跃虎,王飞,刘晓东,袁泽剑.一种特征矩阵的相似性度量方法及其在图像检索中的应用[J].模式识别与人工智能,2006,19(4):497-502. 被引量:9
  • 3刘宝生,闫莉萍,周东华.几种经典相似性度量的比较研究[J].计算机应用研究,2006,23(11):1-3. 被引量:44
  • 4Desimone R, Duncan J. Neural mechanisms of selective visual attention[J]. Annual Review of Neuroscience, 1995, 18(1): 193-222.
  • 5Han J H. Ma Y. Zhon B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE (,eoscience Remote Sensing l,etters, 2014, 11 (12): 2168-2172.
  • 6Sun J, Chen R. He J. A Modified GBVS Method with Entropy for Extracting Bottom-up Attenlion Information[M]. tteidelherg: Springer, 2012: 765-770.
  • 7Hansen I, K. Karadogan S, Marehegiani L. What to measure next Io improve decision making? On top-down task driven feature saliency [C]. Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Symposium on. IEEE, 2011: 1-7.
  • 8Balueh F, hti I,. Meehanisms of top-down attention[J]. Trends in Neurosciences, 2011, 34(4): 210-224.
  • 9Koch C, Ulhnan S. Shifts In Selective Visual Attention: Towards the Underlying Neural Circuitry[M]. Netherlands: Springer, 1987: 115-141.
  • 10llti I, Koch C, Niebur E. A model of salieney-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analvsis and Machine Intelligence, 1998, 20(11 ): 1254-1259.

引证文献10

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部