期刊文献+

用于光生毫米波的双频激光放大特性 被引量:4

Amplification of Dual-Frequency Laser for Photonic Millimeter-Wave Signal Generation
原文传递
导出
摘要 采用激光二极管端面抽运的双纵模Nd∶YVO4微片激光器作为种子光源,双端面抽运的Nd∶YVO4行波放大器作为功率放大器,获得了大频差、高功率双频激光信号输出。分析了放大过程中光谱匹配对双频激光输出特性的影响。结果表明,随种子光入射功率从小到大变化,放大倍率呈起伏减小的趋势;受到放大器增益带宽的限制,放大后双频激光频差小于种子光频差。当种子源和放大器的抽运电流分别为14.5A和40.0A时,最终获得了功率为2.38 W,频差为47.7GHz的双频激光信号输出。 By employing laser diodes end-pumped dual-longitudinal-modes Nd: YV0- microchip laser as seed source, dual-end-pumped Nd: YV04 traveling wave amplifier as power amplifier, a dual-frequency laser with larger frequency separation and high power output is obtained. In amplification process, spectral matching effects are analyzed. The results show that, with the increase of the seed light power, the overall magnification shows a decreasing trend, and the detail shows a wavy trend. Due to the limiting of amplifier gain bandwidth, the frequency separation of amplified signal is less than that of the seeds, When the pump currents of microchip and amplifier are 14.5 A and 40.0 A, respectively, the amplified output signal power is 2,38 W and the frequency separation is 47.7 GHz.
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第11期210-215,共6页 Acta Optica Sinica
基金 浙江省自然科学基金(LQ13F010012)
关键词 激光器 双频激光 功率放大 增益曲线 光谱匹配 lasers dual-frequency laser power-amplify gain curve spectral matching
  • 相关文献

参考文献22

二级参考文献169

共引文献200

同被引文献54

  • 1保延翔,黄晓,张迅,罗锡璋.缓冲气体对光泵亚毫米波激光作用的定量解释[J].红外与毫米波学报,2005,24(3):221-223. 被引量:1
  • 2徐方华,王正平,张怀金,刘训民,许心光,王继扬,邵宗书,蒋民华.LD抽运Nd:LuVO_4微片激光器性能研究[J].物理学报,2007,56(7):3950-3954. 被引量:9
  • 3Koonen A M, Larrodé M G, Ng′oma A, et al.. Perspectives of radio-over-fiber technologies[C]. Optical Fiber Communication/National Fiber Optic Engineers Conference, San Diego: IET. 2008: 0ThP3.
  • 4Rolland A, Frein L, Vallet M, et al.. 40-GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1738-1740.
  • 5Hyodo M, Tani M, Matsuura S, et al.. Generation of millimeter-waves radiation using a dual-longitudinal-mode microchip laser[J]. Electronics Letters, 1996, 32(17): 1589-1591.
  • 6Lai N D, Brunel M, Bretenaker F, et al.. Two-frequency Er-Yb glass microchip laser passively Q switched by a Co∶ASL saturable absorber[J]. Opt Lett, 2003, 28(5): 328-330.
  • 7Brubel M, Amon A, Vallet M. Dual-polarization microchip laser at 1.53 mm[J]. Opt Lett, 2005, 30(18): 2418-2420.
  • 8Rolland A, Brunel M, Loas G, et al.. Beat note stailzation of a 10-60 GHz Nd∶YAG microchip laser through optical down conversion[J]. Opt Express, 2011, 19(5): 4399-4404.
  • 9Zhao Pu, Srinivasa R, Ding Yujie, et al.. Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses[J]. Opt Lett, 2011, 36(24): 4818-4820.
  • 10Rolland A, Ducournau G, Danion G, et al.. Narrow linewidth tunable terahertz radiation by photomixing without servo-locking[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(2): 260-266.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部