期刊文献+

带有加权源与吸收非线性质的抛物型方程的爆破时间的界及爆破速率的估计(英文) 被引量:1

Bounds for the Blowup Time and Blowup Rate Estimates for a Parabolic Equation with Weighted Source and Absorption Nonlinearity
下载PDF
导出
摘要 对一类定义有界区域ΩRn(n≥3)上的带有加权源与吸收非线性质的抛物型方程建立了爆破时间的界,也给出了爆破速率估计. The bounds for the blowup time and blowup rate estimates for a parabolic equation with weighted source and absorption nonlinearity are establisbed in a bounded domain ΩRn(n≥3).The estimate for the blowup rate is also given.
作者 王菲菲 王宁
机构地区 天津大学理学院
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期26-30,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
关键词 抛物型方程 爆破时间的界 爆破速率 加权非线性源 parabolic equation bounds of blowup time blowup rate weighted nonlinear source
  • 相关文献

参考文献10

  • 1Song X F, Lv X S. Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source[J]. Appl Math Comput, 2014, 236. 78-92.
  • 2Bao A G, Song X F. Bounds for the blowup time of the solutions to quasi-linear parabolic problems[J]. Z Angew Math Phys, 2014, 65:115--123.
  • 3Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Neumann conditions[J]. Ap- pl Anal, 2006, 85:1 301--1 311.
  • 4Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Dirichlet eonditions[J]. J Math Anal Appl, 2007, 328:1 196--1 205.
  • 5Payne L E, Philippin G A, Schaefer P W. Blow-up phenomena for some nonlinear parabolic problems[J]. Nonlinear Anal, 2008, 69:3 495--3 502.
  • 6Payne L E, Philippin G A, Schaefer P W. Bounds for blow-up time in nonlinear parabolic problems[J]. J Math Anal Appl, 2008, 338: 438--447.
  • 7Payne L E, Schaefer P W. Bounds for blow-up time for the heat equation under nonlinear boundary conditions[J]. Proc Roy Soc Edinburgh Sect A, 2009, 139:1 289--1 296.
  • 8Song J C. Lower bounds for the blow-up time in a non-local reaction-di, usion problem[J]. Appl Math Letters, 2011, 24: 793--796.
  • 9Jiang L J, Xu Y P. Uniform blow-up rate for parabolic equations with a weighted nonlocal nonlinear source [J]. J Math Anal Appl, 2010, 365: 50--59.
  • 10Liu Q L, Li Y X, Gao X J. Uniform blow-up rate for diffusion equations with nonlocal nonlinear source[J]. Nonlin- ear Anal, 2007, 67:1 947--1 957.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部