期刊文献+

基于Sigma点H_∞滤波的拟蒙特卡罗粒子滤波算法 被引量:1

Quasi-Monte Carlo particle filter algorithm based on sigma point H_∞
下载PDF
导出
摘要 在滤波算法中,用Sigma点H∞滤波来产生重要性概率密度函数,由于Sigma点H∞滤波对不确定观测噪声具有较强的鲁棒性,而且在滤波过程中考虑了最新的观测值,因此由其产生的重要性函数更逼近于真实的后验概率分布。同时在重采样阶段,利用拟蒙特卡罗重采样算法进行重采样,有效地克服了粒子退化现象并提高了状态估计精度。仿真结果表明了所提算法的可行性和有效性。 A new filtering algorithm is proposed.In this algorithm,the probability density function is generated by the sigma point H∞filter.The sigma point H∞filter has very high accuracy and strong robustness to uncertain observation noise,and the filter algorithm integrates the new observation.So the generated probability density function can reasonably approximate the real posterior probability distribution of the system state.At the resampling step,the degeneration problem is effectively overcome and the accuracy of state estimation is improved by using the quasi-Monte Carlo-based resampling algorithm.Simulation results demonstrated the feasibility and effectiveness of the proposed algorithm.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第6期1831-1837,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 陕西省自然科学基金项目(2012JM8023)
关键词 通信技术 Sigma点转换 H∞滤波 准蒙特卡罗 粒子滤波 非线性系统 communication Sigma point transformation H∞ filtering quasi-Monte Carlo particle filtering nonlinear system
  • 相关文献

参考文献10

  • 1Gordon N J,Salmond D J.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings Part F,Radar,Sonar and Navigation,1993,140(2):107-113.
  • 2Doucet A,Godsill S J,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 3Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].IEEE Transactions on Signal Processing,2004,92(3):401-422.
  • 4万洋,王首勇,于兴伟.一种扩展H_∞粒子滤波方法[J].信号处理,2010,26(6):869-874. 被引量:4
  • 5Andrieu C,Freitas J F G,Doucet A.Sequential MCMC for Bayesian model selection[C]∥IEEE Higher Order Statistics Workshop,Ceasarea,1999:130-134.
  • 6Kotecha J H,Djuric P M.Gaussian particle filtering[J].IEEE Transactions on Signal Processing,2003,51(10):2592-2601.
  • 7赵玲玲,马培军,苏小红.一种快速准蒙特卡罗粒子滤波算法[J].自动化学报,2010,36(9):1351-1356. 被引量:12
  • 8侯代文,殷福亮,陈喆.基于sigma点H∞滤波的说话人跟踪方法[J].信号处理,2009,25(3):374-378. 被引量:8
  • 9Guo D,Wang X D.Quasi-Monte Carlo filtering in nonlinear dynamic systems[J].IEEE Transactions on Signal Processing,2006,54(6):2087-2098.
  • 10程水英,张剑云.裂变自举粒子滤波[J].电子学报,2008,36(3):500-504. 被引量:50

二级参考文献53

  • 1顾冬晴,秦永元.姿态匹配传递对准的H_∞滤波器设计[J].空军工程大学学报(自然科学版),2005,6(2):32-35. 被引量:2
  • 2I. Potamitis, H. Chen and G. Tremoulis. Tracking of multiple moving speakers with multiple microphone arrays [ J ]. IEEE Transactions on Speech and Audio Processing ,2004, 12(5) :520-529.
  • 3M. A. Brandstein. Framework for Speech Source Localization Using Sensor Arrays [ D ]. Ph.D. Thesis, Brown University, Providence, RI, U. S. A, 1995.
  • 4D. Bechler, M. Grimm, and K. Kroschel. Speaker tracking with a microphone array using Kalman filtering [ J ]. Advances in Radio Science,2003,1:113-117.
  • 5T. Dvorkind and S. Gannot. Speaker localization exploiting spatial-temporal information [ A ]. Proceedings of the IEEE International Workshop on Acoustic Echo and Noise Control [ C ]. Kyoto, Japan : IWAENC, 2003 : 295-298.
  • 6S Gannot and T Dvorkind. Microphone array speaker localizers using spatial-temporal information [ J ]. Special Issue " Advances in Muhimicrophone Speech Processing", EURASIP Journal on Applied Signal Processing. 2006, 2006 : 1-17.
  • 7R. van der Merwe, E. Wan, and S. J. Julier. Sigma-point Kalman filte~ for nonlinear estimation and sensor-fusion: applications to integrated navigation [ A ]. Proceedings of the AIAA Guidance, Navigation & Control Conference, Providence, RI, Aug 2004.
  • 8T. Lefebvre, H. Bruyninckx,and J. De Schutter. Comment on 'A new method for the nonlinear transformation of means and covariances in filters and estimators' [ J ]. IEEE Transactions on Automatic Control ,2002,47 ( 8 ) : 1406-1408.
  • 9R. Fitzgerald. Divergence of the Kalman filter [ J]. IEEE Transactions on Automatic Control, 1971,16 (6) :736-747.
  • 10Dan Simon. Optimal State Estimation: Kalman, H∞ , and Nonlinear Approaches [ M ]. New Jersey:John Wiley & Sons Inc, 2006 : 333-391.

共引文献68

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部