期刊文献+

有限离散剪切波域结合区域客观评价的图像融合 被引量:7

Image fusion based on area objective assessment in finite discrete shearlet transform domain
下载PDF
导出
摘要 为了提升多源图像融合精度,提出了一种有限离散剪切波(FDST)域结合图像区域客观评价的自适应融合方法。该方法利用有限离散剪切波(FDST)对源图像进行多尺度、多方向分解,低频子带图像采用梯度信息相关性因子作为系数权值,高频子带图像应用绝对值与区域标准差一致性选择的融合策略。应用有限离散剪切波逆变换重构图像,采用多组多源图像进行融合试验,并对融合结果进行了客观评价。试验结果表明,本文提出的融合方法在主观和客观评价上均优于其他多尺度分解(MSD)融合方法。 To enhance the accuracy of multi-source image fusion,an adaptive fusion method is proposed.This method is based on the area objective assessment in Finite Discrete Shearlet Transform(FDST)domain.The source images are decomposed to subband images with multi-scale and multi-direction by FDST.The gradient information correlation factor is taken as the coefficient weight for low-frequency subband fusion;while for high-frequency subband,consistency selection of the coefficient absolute value and area standard deviation is adopted as the fusion rule.The fused low and high frequency coefficients are reconstructed to image by Finite Discrete Shearlet Inverse Transform(FDSIT).Fusion experiment is done with several sets of different modality images,and objective performance assessments of the fusion results are implemented.Results indicate that the proposed method performs better in subjective and objective assessments than other existing Multi-Scale Decomposition(MSD)fusion techniques.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第6期1849-1859,共11页 Journal of Jilin University:Engineering and Technology Edition
基金 高等学校博士学科点专项科研基金项目(20110061110059) 吉林省科技发展计划重点项目(20110326)
关键词 信息处理技术 有限离散剪切波变换 融合策略 客观评价 平移不变性 information processing finite discrete shearlet transform(FDST) fusion rule objective assessment shift-invariant
  • 相关文献

参考文献21

二级参考文献151

共引文献148

同被引文献77

  • 1李臣明,张师明,李昌利.非负矩阵分解的一个约束稀疏算法[J].四川大学学报(工程科学版),2015,47(2):108-111. 被引量:3
  • 2F Chen, Z Guan, X Yang, et al.. A novel remote sensing image fusion method based on independent component analysis[J]. International Journal of Remote Sensing, 2011, 32 (10): 2745-2763.
  • 3A Toet. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253.
  • 4G K Matsopoulos, S Marshall. Application of morphological pyramids: Fusion of MR and CT phantoms[J]. Journal of Visual Communication and Image Representation, 1995, 6(2): 196-207.
  • 5X Bai, F Zhou, X Bindang. Fusion of infrared sand visual images through region extraction by using multi scale center- surround top-hat transform[J]. Opt Express, 2011, 19(9): 8444-8457.
  • 6Hong R, Wang C, Wang M, et al.. Salience preserving multifocus image fusion with dynamic range compression[J]. International Journal of Innovative Computing, Information and Control, 2009, 5(8): 2369-2380.
  • 7J Zhao, Q Zhou, Y Chen, et al.. Fusion of visible and infrared images using saliency analysis and detail preserving based image decomposition[J]. Infrared Physics & Technology, 2013, 56: 93-99.
  • 8J Zhao, H Feng, Z Xu, et al.. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition[J]. Optics Communications, 2013, 287(15): 45-52.
  • 9J Zhao, Y Chen, H Feng, et al.. Infrared image enhancement through saliency feature analysis based on multi-scale decomposition[J]. Infrared Physics & Technology, 2014, 62: 86-93.
  • 10R Achanta, S Hemami, F Estrada, et al.. Frequency-tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1597-1604.

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部