期刊文献+

振幅阻尼信道下两量子比特的联合Kraus算子表示(英文)

Quantum Kraus operators of two qubits for amplitude damping
下载PDF
导出
摘要 振幅阻尼噪声存在于大量具有能量损失的真实量子比特系统中。利用两原子和单模腔共振相互作用的普遍模型,推导出振幅阻尼信道下两量子比特系统的联合Kraus算子表示。这为解决与量子信息处理相关的具体过程提供了有效方法,例如两量子比特纠缠分发和量子纠错。由于其普适性和计算的简便性,该方法还有助于解决很多实际的物理问题。 Amplitude damping noise exists in many practical qubit systems with the loss of energy. The presentation of quantum Krans operators of two-qubit system in amplitude damping channel was derived by using a common model in which two atoms are interacting with a single mode cavity resonantly. It provides a method by which concrete progress can be made on problems related to quantum information processing, such as bi-particle entanglement distribution and quantum error correction. Owning to its generality and convenience, this means is helpful to deal with real physical problems.
出处 《量子电子学报》 CAS CSCD 北大核心 2014年第6期710-714,共5页 Chinese Journal of Quantum Electronics
基金 National Natural Science Foundation of China(11204002,11274010) the Specialized Research Fund for the Doctoral Program of Higher Education(20123401120003,20113401110002) the Key Program of the Education Department of Anhui Province(KJ2012A020)
关键词 量子光学 Kraus算子 振幅阻尼 两量子比特 quantum optics Kraus operator amplitude damping two qubits
  • 相关文献

参考文献3

二级参考文献49

  • 1ZHANG Yong,CAO Wan-Cang,LONG Gui-Lu.Creation of Entanglement with Nonlocal Operations[J].Communications in Theoretical Physics,2005,44(4X):625-630. 被引量:8
  • 2曾明生,谢芳森,江辉明.压缩真空场与运动二能级原子相互作用的量子纠缠[J].量子电子学报,2006,23(5):647-651. 被引量:4
  • 3黄万霞,汪茂胜,王勤谋.Tavis-Cummings模型中两原子纠缠的时间演化[J].量子电子学报,2007,24(3):329-334. 被引量:8
  • 4Nielsen M A, Chuang I L. Quantum Computation and Quantum Information [M]. Cambridge: Cambridge Uni- versity Press, 2000: 11-12.
  • 5Herec J, Fiurasek J, JR L M. Entanglement generation in continuously coupled parametric generators [J]. Opt. B: Quantum Semiclass. Opt., 2003, 5: 419-426.
  • 6Zheng S B, Guo G C. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED [J]. Phys. Rev. Lett., 2000, 85(11): 2392-2395.
  • 7Zubairy M S, Kim M, Scully M O. Cavity-QED-based quantum phase gate [J]. Phys. Rev. A, 2003, 68: 0033820.
  • 8Yu T, Eberly J H. Finite-time disentanglement via spontaneous emission [J]. Phys. Rev. Lett., 2004, 93: 140404.
  • 9Ficek Z, Tanas R. Delayed sudden birth of entanglement [J]. Phys. Rev. A, 2008, 77: 054301.
  • 10Almeida M P, Melo F, et al. Environment-induced sudden death of entanglement [J]. Science, 2007, 316: 579.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部