期刊文献+

φ-混合样本下缺失数据情形线性模型回归系数估计的渐近性质 被引量:1

Asymptotic Properties of Estimators of Regression Coefficients in Linear Models Under Phi-Mixing Samples with Missing Data
原文传递
导出
摘要 φ-混合样本下,当响应变量满足随机缺失机制时,利用回归填补方法填补缺失的数据,在此基础上给出了线性模型回归系数的估计,并在一定的条件下证明了估计的渐近正态性. Under φ-mixng samples , when the response variable is missing at random, we employ the linear regression imputation method to impute data and obtain estimators of regression coefficients. It is shown that proposed estimators are asymptotically norma dis- tributed in some mild conditions.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第21期266-273,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11201088) 广西自然科学基金(2013GXNSFBA019001) 广西教育厅科研项目(201106LX054)
关键词 φ-混合样本 缺失数据 φ-mixng samples missing data
  • 相关文献

参考文献9

  • 1Wang Q, Rao J N K. Empirical likelihood-based inference in linear models with missing data[J]. Scand J Stati-st, 2002, 29(3): 563-576.
  • 2Wang Q, Rao J N K. Empirical likelihood for linear regression models under imputation for missing responses [J]. Canad J Statist, 2001, 29(4):597-608.
  • 3黎玲,秦永松.缺失数据情形总体差异的经验似然置信区间[J].广西师范大学学报(自然科学版),2008,26(2):45-48. 被引量:4
  • 4李英华,秦永松.MAR缺失机制下随机设计情形线性模型回归系数的估计[J].广西师范大学学报(自然科学版),2008,26(4):30-33. 被引量:2
  • 5李英华,秦永松.缺失数据下线性模型回归系数估计的大样本性质[J].数学研究,2008,41(4):426-433. 被引量:5
  • 6Owen A B. Empirical likelihood for linear models[J]. Ann. Statist, 1991, 19: 1725-1747.
  • 7Qin Y, Li Y. Empirical likelihood for linear models under negatively associated errors[J]. Journal of Multivariate Analysis, 2011, 102: 153-163.
  • 8Wang X, Hu S, Yan S, Yang W. Moment inequality for C-mixing sequences and its applications[J] J. Inequal Appl, 2009: 1-12..
  • 9Volkonskii V A, Rozanov Y A. Some limit theorems for random functions [J]. Theor Prob Appl 1959, 4: 178-197.

二级参考文献13

  • 1雷庆祝,秦永松.m-相依样本下条件密度的经验似然置信区间[J].广西师范大学学报(自然科学版),2006,24(2):32-35. 被引量:2
  • 2Brick J M, Kalton G. Handling missing data in survey research. Statist Methods Med Res, 1996, 5: 215-238.
  • 3Qin Yong-song, Rao J N K, REN Qun-shu. Confidence interval for marginal parameters under fractional linear regression imputation for missing data. J. Multivariate Anal, 2008, 99: 1232-1259.
  • 4Wang Q, Rao J N K. Empirical likelihood-based inference in linear models with missing data. Scand J. Statist, 2002, 29: 563-576.
  • 5Wang Q, Rao J N K. Empirical likelihood for linear regression models under imputation for missing responses. Canad. J. Statist, 2001, 29: 597-608.
  • 6Chen J, Rao J N K. Asymptotic normality under two-phase sampling designs. Statistica Sinica, 2007, 17: 1047-1064.
  • 7BRICK J M ,KALTON G. Handling missing data in survey research[J]. Statist Methods Med Res, 1996,5 : 215-238.
  • 8QIN Yong-song,RAO J N K,REN Qun-shu. Confidence interval for marginal parameters under fractional linear regression imputation for missing data[J]. J Multivariate Anal,2008,99(6):1232-1259.
  • 9WANG Qi-hua,RAO J N K. Empirical likelihood-based inference in linear models with missing data[J]. Seand J Statist,2002,29(3) :563-576.
  • 10WANG Qi-hua,RAO J N K. Empirical likelihood for linear regression models under imputation for missing responses [J]. Canad J Statist, 2001,29(4) : 597-608.

共引文献6

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部