期刊文献+

二项式系数倒数级数恒等式 被引量:14

The Series of the Reciprocal of Binomial Coefficients
原文传递
导出
摘要 利用已知级数,通过裂项构造出一批新的二项式系数倒数级数,它们的分母分别含有1到4个奇因子与二项式系数的乘积表达式.所给出二项式系数倒数级数的和式是封闭形的. Using one known series, we can structure several new series of reciprocals of binomial coefficients by splitting items. These denominators of series contains different the multiplication of 1 to 4 odd factors and combinatorial numbers. And some identities of series of numbers values of reciprocals of binomial coefficients are given .The method of split items offered in this paper is a new combinatorial analysis way and a elementary method to construct new series.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第21期301-307,共7页 Mathematics in Practice and Theory
基金 银川能源学院科研项目(2012-KY-P-32)
关键词 二项式系数 裂项 倒数 级数 封闭形 恒等式 binomial coefficients Split terms reciprocal series form closed Identity
  • 相关文献

参考文献8

  • 1Lehmer D H. Interesting series involving the central binomial coefficients[J]. Amer, Math. Monthly, 1985, 7: 449-457.
  • 2Sury B. Tianning Wang, and Feng-Zhaen Zhao,Some identities involving of. binomial coefficients[J].J. integer Sequences, 2004, 7(2): 2-12.
  • 3Solo A. general properties involving reciprocal of Binomial coefficients[J]. Journal of integral se- quences, 2006, 9(4): 1-13.
  • 4Amghibech S. On sum involving Binomial coefficient[J]. Journal of integer sequences, 2007, 7(2): 1-17.
  • 5Jin-Hua Yang and Feng-zhen Zhao,Sums involving the inverses of binomial coefficients[J]. Journal of integer Sequences, 2006, 9(6): 1-11.
  • 6Trif T. combinatorial sums and series involving inverses of binomial coefficients[J]. Fibonacci Quar- terly, 2000, 38(1): 79-84.
  • 7Borwein J M, and Girgensohn R. evaluation of binomial series[J]. Aequationens Math, 2005, 70: 25-36.
  • 8R.Sprugnoli,sums of reciprocal of the central binomial coefficients, integral[J], electronic Journal of combinatorial number theory, 2006, 6: 1-18.

同被引文献16

引证文献14

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部