期刊文献+

基于改进异步DBN模型的听视觉融合情感识别

Audio visual emotion recognition based on modified asynchronous DBN models
下载PDF
导出
摘要 提出了一个改进的三特征流听视觉融合异步动态贝叶斯网络情感模型(VVA_Asy DBN),采用面部几何特征(GF)和面部主动外观模型特征(AAM)作为两个视觉输入流,语音Mel倒谱特征(MFCC)作为听觉输入流,且视觉流的状态和听觉流的状态可以存在有约束的异步。在e NTERFACE’05听视觉情感数据库上进行了情感识别实验,并与传统的多流同步隐马尔可夫模型(MSHMM),以及具有两个听觉特征流(语音MFCC和局域韵律特征LP)和一个视觉特征流的听视觉异步DBN模型(T_Asy DBN)进行了比较。实验结果表明,VVA_Asy DBN获得了最高识别率75.61%,比视觉单流HMM提高了12.50%,比采用AAM、GF和MFCC特征的MSHMM提高了2.32%,比T_Asy DBN的最高识别率也提高了1.65%。 This paper proposes a modified triple stream asynchronous DBN model(VVA_AsyDBN)for audio visual emo-tion recognition, with the two visual feature streams, facial geometric features(GF)and facial active appearance model features(AAM), synchronous at the state level, while they are asynchronous with the audio feature stream(Mel Filterbank Cepstrum Coefficients, MFCC)within controllable constraints. Emotion recognition experiments are carried out on the eNTERFACE’05 database, and results are compared with the traditional state synchronous Multi-Stream Hidden Markov Model(MSHMM), as well as the asynchronous DBN model(T_AsyDBN)with two audio feature streams(MFCC and local prosodic features LP)and one visual feature stream. Results show that VVA_AsyDBN obtains the highest performance up to 75.61%, which is 12.50% higher than the visual only HMM, 2.32% higher than the MSHMM with MFCC, AAM and GF features, and 1.65%higher than the T_AsyDBN model with MFCC and LP features as well as AAM features.
出处 《计算机工程与应用》 CSCD 2014年第21期162-165,170,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61273265) 陕西省国际科技合作重点项目(No.2011KW-04)
关键词 听视觉融合 动态贝叶斯网络 主动外观模型(AAM) 异步约束 audio visual fusion Dynamic Bayesian Network (DBN) Active Appearance Model (AAM) asynchronyconstraint
  • 相关文献

参考文献14

  • 1Metze F, Polzehl T, Wagner M.Fusion of acoustic and lin- guistic features for emotion detection[C]//IEEE Int Conf on Semantic Computing(ICSC' 09), 2009- 153-160.
  • 2Yang Peng,Liu Qingshan,Metax D N.Boosting encoded dynamic features for facial expression recognition[J].Pat- tern Recognition Letters, 2009,30 (2) : 132-139.
  • 3Busso C,Deng Z,Yildirim S, et al.Analysis of emotion recognition using facial expressions, speech and multimodal information[C]//ACM Int Conf on Multimodal Interfaces, 2004 : 205-211.
  • 4Zeng Z,Tu J,Liu M,et al.Audio-visual affect recogni- tion[J].IEEE Trans on Multimedia, 2007,9(2) : 424-428.
  • 5Zeng Z, Tu J,Pianfetti, et al.Audio-visual affective expres- sion recognition through multi-stream fused HMM[J].IEEE Transactions on Multimedia, 2008,10(4) : 570-577.
  • 6Song M, You M, Li N, et al.A robust multimodal approach for emotion recognition[J].Neurocomputing, 2008,71 (10/12) : 1913-1920.
  • 7Chen D,Jiang D,Ravyse,et al.Audio-visual emotion rec- ognition based on a DBN model with constrained asyn- chrony[C]//Proc Int Conf Image and Graphics(ICIG),2009: 912-916.
  • 8Jiang Dongmei, Cui Yulu, Zhang Xiaojing, et al.Audio visual emotion recognition based on triple-stream dynamic Bayesian network models[C]//LNCS 6974: Affective Computing and Intelligent Interaction, 2011 : 609-618.
  • 9Cootes T F,Edwards G J,Taylor C J,et al.Active appear- ance models[C]//LNCS 1407 : Computer Vision, 1998 : 484-498.
  • 10Young S, Kershaw O D, Ollason J, et al.The HTK book[M]. Cambridge : Entropic Ltd, 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部