期刊文献+

基于Harris特征点检测与跟踪的火灾烟雾识别 被引量:4

Fire smoke recognition based on Harris feature point detection and tracking
下载PDF
导出
摘要 针对现有的视频火灾烟雾探测方法实时性差,误报率和漏报率都比较高的问题,在深入分析烟雾图像特征的基础上,发现早期烟雾运动缓慢且主要运动方向呈向上趋势,在连续帧中像素的强度变化具有一致性的特点,通过Harris检测算法找到强度变化剧烈和图像边缘的特征点,根据光流场与运动场的对应关系由成像平面中光流的变化估计烟雾的相对运动,计算运动矢量信息,实现多特征烟雾检测。该算法是基于烟雾灰度变化的特征点作为检测对象,大大减少了待处理的数据量,缩短了算法处理时间,综合了烟雾的局部特性和全局特性,具有较强的鲁棒性和较高的检测准确率。 Aiming at the problem of lower real time, higher false alarm rate and miss rate in the existing video fire smoke detection methods, the feature that early smoke movement is slow, main movement trend is upward and pixel intensity change is consistent in successive frames is found after depth analysis of smoke image characteristics. Multiple feature smoke detection is realized through the Harris detection algorithm to find intensity changes and image edge feature point, based on the optical flow and the motion field correspondence by imaging plane optical flow estimation smoke changes in relative motion, calculation of motion vector information. This algorithm based on the smoke intensity change feature point as detection object greatly reduces the amount of data and shortens processing time. Because the smoke local and global characteristics are studied and applied, the proposed algorithm has the strong robustness and high detection accuracy rate.
出处 《计算机工程与应用》 CSCD 2014年第21期180-183,194,共5页 Computer Engineering and Applications
基金 高等学校博士学科点专项科研基金项目(No.20126120110008) 陕西省教育厅专项科研计划项目(No.14JK1438) 西安建筑科技大学青年科技基金项目(No.QN1125)
关键词 HARRIS 特征点 Lucas—Kanade目标跟踪 烟雾特征 烟雾识别 Harris feature point Lucas-Kanade target tracking smoke features smoke recognition
  • 相关文献

参考文献15

  • 1Xu Zhengguang, Xu Jialin.Automatic fire smoke detection based on inaage visual features[C]//lnternational Confer- ence on Computational Intelligence and Security Work- shops, 2007 : 316-319.
  • 2Yang Jing,Chen Feng,Zhang Weidong.Visual-based smoke detecion using support vector machine[C]//Fourth Inter- national Conference on Natural Computation, 2008 : 301-305.
  • 3Toreyin B U,Dedeoglu Y,Cetin A E.Wavelet based real- time smoke detection in video[C]//13th European Signal Process Conference, 2005.
  • 4吴爱国,杜春燕,李明.基于混合高斯模型与小波变换的火灾烟雾探测[J].仪器仪表学报,2008,29(8):1622-1626. 被引量:23
  • 5Han Dongil,Lee B.Flame and smoke detection method for early real-time detection of a tunnel fire[J].Fire Safety Journal, 2009,44 : 951-961.
  • 6Thou Ho-chen, Yen Hui-yin, Shi Feng-huang, et aI.The smoke detection for early fre-alarming system based on video processing[C]//Proceedings of the 2006 International Conference on Intelligent lntbrmation Hiding and Multi- media Signal Processing,2006:427-430.
  • 7Yuan Feiniu.A fast accumulative motion orientalion model based on integral image for video smoke detection[J]. Pattern Recognition Letters, 2008,29(7).
  • 8Chen T H,Yin Y H,Huang S F,et al.The smoke detec- tion for early fire-alarming system based on video pro- cessing[C]//Proc of Intelligent Information Hiding and Multimedia Signal, 2006.
  • 9Cui Yu,Dong Hua,Zhou Enze.An early fire detection method based on smoke texture analysis and discrimina- tion[C]//Congress on Image and Signal Processing,2008: 95-99.
  • 10任厚平,张永明,张维农,袁非牛,余春雨.基于混合高斯模型定位的火灾烟雾纹理特征提取[J].微计算机信息,2005,21(11S):83-85. 被引量:7

二级参考文献42

  • 1方帅,薛方正,徐心和.基于背景建模的动态目标检测算法的研究与仿真[J].系统仿真学报,2005,17(1):159-161. 被引量:40
  • 2陈白帆,蔡自兴.基于尺度空间理论的Harris角点检测[J].中南大学学报(自然科学版),2005,36(5):751-754. 被引量:79
  • 3李博,杨丹,张小洪.基于Harris多尺度角点检测的图像配准新算法[J].计算机工程与应用,2006,42(35):37-40. 被引量:32
  • 4Zhang Qi, Chen Yurong, Zhang Yimin, et al. SIFT Implementation and Optimization for Multi-core Systems[C]//Proc. of the 10th Workshop on APDCM. [S. 1.]: IEEE Press, 2008.
  • 5Yasutaka F, Jean E Accurate, Dense, and Robust Multi-view Ste- reopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 1(1): 1-8.
  • 6Harris C, Stephens M J. A Combined Comer and Edge De- tector[C]//Proc, of the 4th Alvey Vision Conference. Manchester, UK: [s. n.], 1988.
  • 7Lindeberg T, Garding J. Shape-adapted Smoothing in Estimation of 3-D Shape Cues from Affine Deformations of Local 2-D Brightness Structure[J]. Image and Vision Computing, 1997, 15(6): 415-434.
  • 8陈南.智能建筑火灾监控系统设计[M].北京:清华大学出版社,1999:52-60.
  • 9LIU B CH, AHU J N. Vision based fire detection [ J ]. IEEE Patten Recognition, 2004,4 (23-26) : 134-137.
  • 10HIDEAKI Y, JUNICHI Y. A contour fluctuation data processing method for fire flame detection using a color camera [J]. IEEE Industrial Electronics Society, 2000,2(22-28): 824-829.

共引文献181

同被引文献24

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部