期刊文献+

全光纤结构超短脉冲超连续谱的产生及其特性研究 被引量:4

All-fiber ultra-short super-continuum generation and characters
下载PDF
导出
摘要 超连续光谱以其光谱范围宽、平坦度好、空间相干度高和可实现的较高功率,被广泛应用于相干成像技术、光谱分析、干涉测量等诸多领域。理论上超连续光谱可由超短脉冲通过高非线性介质来实现,期间伴随着自相位调制(SPM)、受激拉曼散射(SRS)、四波混频效应(FWM)。随着光纤技术的发展,利用峰值功率高、光光转换效率高、体积小、结构紧凑的掺Yb超短脉冲光纤激光器作为泵浦源,高非线性的光子晶体光纤作为非线性介质来产生超连续光谱。采用主振荡功率放大结构(MOPA),自行搭建了全光纤锁模脉冲放大器,并通过熔接的方式将其耦合进入长为10 m、零色散点为1 040 nm的光子晶体光纤,在对熔接过程中放电时间、放电间隔、熔接损耗等参数进行优化后,获得了8.14 W的超连续光谱。 Super﹣continuum (SC) is widely used in coherent photography technology, optical spectroscopy analysis, interferometry, etc because of its flat and broad spectrum, high spatial coherence and high power. Super﹣continuum generation could be realized on theory by ultra﹣short pulse laser getting through the high nonlinear medium, accompany with self﹣phase modulation (SPM), stimulated Raman scattering (SRS), four﹣wave mixing (FWM). With the development of fiber technology, Yb- doped ultra﹣short pulse fiber laser, which has high peak power, high optic﹣to﹣optic efficiency, compact structure and small volume was elected as the pump source, and high nonlinear photonic crystal fiber (PCF) as the nonlinear medium for SC. In this paper, a self﹣made amplified mode﹣locked pulse was coupled into a 10m PCF, with 1 040 nm zero dispersion point, to generate 8.13W super﹣continuum by fusing method, during which the key parameters like discharge time, discharge interval, splice loss are seriously optimized to keep the fusing quality well.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第11期3555-3558,共4页 Infrared and Laser Engineering
基金 工业用高功率全光纤激光器的开发(2010ZX04013-052)
关键词 锁模脉冲激光 主振荡功率放大 全光纤结构 超连续光谱 Mode﹣locked pulse laser master oscillator power amplifier all﹣fiber structure super﹣continuum
  • 相关文献

参考文献2

二级参考文献46

  • 1刘卫华,王屹山,刘红军,段作梁,赵卫,李永放,彭钦军,许祖彦.初始啁啾对飞秒脉冲在光子晶体光纤中超连续谱产生的影响[J].物理学报,2006,55(4):1815-1820. 被引量:19
  • 2张巍,张磊,陈实,蔡青,黄翊东,彭江得.高非线性光子晶体光纤与单模光纤低损耗熔接实验[J].中国激光,2006,33(10):1389-1392. 被引量:16
  • 3Affano R R. The supercontinuum laser source[M]. 2nd ed. New York , Springer-Verlag, 2006.
  • 4Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J].Rev Mod Phys, 2006, 78:1135-1184.
  • 5Islam M N, Sueha G, Bar-Joseph I, et al. Broad bandwidths from frequency-shifting solitons in fibers[J]. Opt Lett, 1989, 14(7) :370-372.
  • 6Chang Guoqing, Norris T B, Winful H G. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression[J]. Opt Lett, 2003, 28(7) :546-548.
  • 7Birks T A, Wadsworth W J, Russell P S J. Supercontinuum generation in tapered fibers[J]. Opt Lett, 2000, 25(19) :1415-1417.
  • 8Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. OptLett, 2000, 25(1) :25-27.
  • 9Blanch A O, Knight J C, Russell P S J. Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers[J]. JOpt SocAm B, 2002, 19(11) :2567-2572.
  • 10Kumar R K, George A K, Reeves W H, et al. Extruded soft glass photonie crystal fiber for ultrabroad supercontinuum generation[J]. Opt Express, 2002, 10(25) :1520-1525.

共引文献12

同被引文献22

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部