期刊文献+

采用混合粒子群算法的星图识别方法 被引量:7

Star recognition method based on hybrid particle swarm optimization algorithm
下载PDF
导出
摘要 为提高大视场高灵敏度星敏感器的星图识别速度和识别成功率,提出了一种基于混合粒子群算法的星图识别方法,该方法首先根据星图中星点的灰度信息确定候选识别主星集合;然后选择该集合中的一个星点为圆心,以一定角距为半径画圆,将圆内的所有星点构成特征数据集合;然后利用混合粒子群算法对圆内的星点进行快速路径寻优;最后利用最优路径长度进行索引,并利用最优路径中前三个星点间的角距以及它们的星等信息进行匹配识别;实验结果表明,与现有识别方法相比,该方法具有高的识别率,良好的实时性和鲁棒性,且所需的导航星库容量小。 A new star recognition method based on hybrid particle swarm algorithm was developed to increase recognition speed and success rate for large field high sensitivity star sensors. Firstly, several candidate recognition main stars were determined with the gray information. Then a circle was drawn with the given circle radius, and all stars in the circle were selected to constitute a characteristics data collection. Hybrid particle swarm algorithm was used for fast path optimization to construct recognition characteristics. Finally, the optimal path length was used for indexing to search matching star, and preceding three star angular distance and magnitude in the optimal path were used for matching recognition to enhance recognition speed and success rate. Experimental results show that, compared with existing recognition methods, star recognition method based on hybrid particle swarm optimization algorithm has a higher recognition rate, good real﹣time and robustness to noise, and it requires small star database capacity.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第11期3762-3766,共5页 Infrared and Laser Engineering
基金 总装基金 华中科技大学青年教师基金(2013QN052)
关键词 星图识别 导航星库 混合粒子群算法 遗传算法 模拟退火 star recognition navigation star database hybrid particle swarm optimization genetic algorithm simulated annealing
  • 相关文献

参考文献2

二级参考文献9

  • 1田宏,李展.提高星图识别正确率的方法研究[J].光电工程,2003,30(6):1-3. 被引量:9
  • 2VAN BEZOOIJEN R W H.True-sky demonstration of an autonomous star tracker [J].SPIE,1994,2221:156-168.
  • 3GRAHAM R L.An efficient algorithm for determine the convex hull of a finite linear set [J].Information Proc.Lett,1972,1(1): 132-133.
  • 4ACCARDO D,RUFINO G.Innovative solution for initial acquisition by an autonomous star sensor: algorithm,implementation,and test [J].Gyroscopy and Navigation,2001,32 (2):87-100.
  • 5BAUER R.Distribution of points on a sphere with application to star catalogs [J].Journal of Guidance and Control,2000,23(1):112-118.
  • 6Eberhart R C, Kennedy J. A new optimizer using particles swarm theory[A]. Proc Sixth Int Symposium on Micro Machine and Human Science[C]. Nagoya,1995.39-43.
  • 7Shi Y H, Eberhart R C. A modified particle swarm optimizer [A]. IEEE Int Conf on Evolutionary Computation[C]. Anchorage, 1998. 69-73.
  • 8Maurice Clerc. Discrete particle swarm optimization illustrated by the traveling salesman problem [DB].http://www. mauriceclerc. net, 2000.
  • 9海峰,袁家虎,毛羽国.快速星图匹配算法的研究[J].光电工程,1998,25(6):70-74. 被引量:16

共引文献82

同被引文献50

  • 1刘朝山,黄欣,刘光斌.凸多边形星图识别算法[J].光电工程,2004,31(9):7-9. 被引量:11
  • 2房建成,全伟,孟小红.基于Delaunay三角剖分的全天自主星图识别算法[J].北京航空航天大学学报,2005,31(3):311-315. 被引量:20
  • 3代东明,赖康生,许祖茂,夏德宽.基于DSP的双线阵CCD红外测宽系统[J].光电子.激光,2005,16(12):1424-1428. 被引量:5
  • 4张广军,魏新国,江洁.一种改进的三角形星图识别方法[J].航空学报,2006,27(6):1150-1154. 被引量:30
  • 5Sabbey C N,Ooppi P,Oemler A. Data acquisition for a]6 CCD drift-scan survey[J]. The Astronomical Society of the Pacific,1998.llO(75t) 1067-1080.
  • 6LUO Li-yan, XU Lu-ping,ZHANG Hua. An autonomous star identification algorithm based on one-dimensional vector pattern for star sensors[J]. Sensors,g015,7(15) ; 16412- 29.
  • 7LI Bao-hua, SUN Qi, ZHANG Tong-shuang. A star pattern recognition algorithm for the double-FOV star sensor[J]. IEEE Aerospace and Electronic System Magazine, 2015, 30(8) : 24-31.
  • 8ZHANG Peng,ZHAO Oi-le, LIU Jing-nan,et al. A bright- ness-referenced star identification algorithm for APS star trackers[J]. Sensors, 2014,10(14) : 18498-514.
  • 9Yi W, Liu H, Yang J, et al. Three-dimensional grid algo- rithm for all-sky autonomous star identification[J]. Inter- national Society for Optics and Photonics, 2012,842008.
  • 10Sadat Elaheh, Behrad Alireza. Star tracking and attitude determination using fuzzy based position pattern and rota- tion compensation in Fourier domain[J]. Multiedia Sys- tem, 2015,21 (4) : 401-410.

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部