期刊文献+

基于贝叶斯运行模态分析法的砂轮架动态特性分析 被引量:3

Dynamic Characteristics Analysis of Wheelhead Based on Bayesian OMA Approach
下载PDF
导出
摘要 为了研究砂轮架的固有模态和在工作环境中的谐波模态,运用贝叶斯理论和运行模态分析相结合的模态参数识别技术——分步测试的贝叶斯运行模态分析法对环境状态下的砂轮架进行模态识别,获得了结构的动态特性,包括固有频率、振型以及阻尼特性等,并对外激励和预测误差水平以及信噪比进行了评估;将该模态识别结果与传统试验模态分析结果进行对比,验证了贝叶斯运行模态分析法的应用可行性;进一步在工作环境下对砂轮架进行了振动测试,对比开机前的模态识别结果和开机后砂轮架的功率谱密度图,成功地区分出砂轮架的固有模态和实际工作环境中由结构周期激励引起的谐波模态。 In order to study the wheelhead’s intrinsic modes from natural environment and harmonic modes under working conditions ,a modal parameter identification technology based on Bayesian theory and OMA - Bayesian OMA approach was adopted .It was applied to identify the wheelhead’s modal property by ambient vibration tests using different setups .The dynamic characteristics obtained included the natural frequencies ,mode shapes and damping ratios ,which were compared with traditional experimental modal analysis results then to verify the feasible practical applications of Bayesian OMA approach .The estimation for the level of excitation ,prediction error and signal-to-noise ratio also added to the approach’s uniqueness .Furthermore ,vibration tests were conducted for the wheelhead under operational situations .The contrast between identified results from natural environment and power spectral density(PSD) in actual working conditions helps to distinguish the wheelhead’s in‐trinsic modes and harmonic modes caused by periodic excitation successfully .
机构地区 上海理工大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第22期3081-3087,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(11002084) 上海市教委创新基金资助项目(12YZ092 12YZ074) 沪江基金资助项目(D14005)
关键词 贝叶斯理论 运行模态分析 动态特性 谐波模态 Bayesian theory operational modal analysis (OMA) dynamic characteristics harmonic mode
  • 相关文献

参考文献12

  • 1孙文钊,王禹林,冯虎田.螺杆转子磨床砂轮架的动态特性分析与优化[J].组合机床与自动化加工技术,2011(12):4-9. 被引量:4
  • 2崔中,文桂林.高速凸轮轴磨床砂轮架的结构分析及改进研究[J].机械设计与研究,2008,24(1):108-111. 被引量:7
  • 3徐宏海,李晓阳.带超长滚珠丝杠的立式玻璃磨边机砂轮架模态分析[J].振动与冲击,2013,32(18):189-194. 被引量:9
  • 4向俊,韩秋实,舒赞辉,彭宝营.凸轮轴磨床砂轮架试验模态分析[J].新技术新工艺,2011(4):18-20. 被引量:1
  • 5de Vivo A, Brutti C, Leofanti J L. Modal Shape Identification of Large Structure Exposed to Wind Excitation by Operational Modal Analysis Tech- nique[J]. Mechanical Systems and Signal Process- ing,2013,39(1/2) : 195-206. 28(1) :64-67.
  • 6Zhang Yimin, Zhang Shouyuan, Li He, et al. Modes in Operational Modal Analysis[J3. Journal of Vibra- tion and Shock,2009,28(1):64-67.
  • 7Zhang Guowen, Tang Baoping, Tang Guangwu. An Improved Stochastic Subspace Identification for Operational Modal Analysis [J ]. Measurement, 2012,45 (5) : 1246-1256.
  • 8Zhang Lingmi, Wang Tong, Tamura Yukio. A Fre- quency - spatial Domain Decomposition (FSDD) Method for Operational Modal Analysis [J]. Me chanica[ Systems and Signal Processing, 2010, 24 (5) : 1227-1239.
  • 9Huang N E,Shen Z,Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Non- linear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society of London, 1998, 454 ( 1 ) : 903-995.
  • 10Yuen K V, Katafygiotis L S. Bayesian Fast Fou- rier Transform Approach for Modal Updating Using Ambient Data[J]. Advances in Structural Engineering, 2003,6 (2) : 81-95.

二级参考文献34

共引文献15

同被引文献12

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部