摘要
传统的BP神经网络收敛速度慢,以及该算法的不完备性,易陷于局部极小,全局最优无法保证能收敛到等缺点.针对BP神经网络的缺陷,该文提出了遗传算法,利用遗传算法优化BP神经网络权值和阈值,使得训练了BP神经网络预测模型得到了最优解.采用遗传算法优化BP神经网络的算法,并以此结合算法来研究非线性函数拟合的问题.从实验结果表明,基于遗传算法优化的BP神经网络的非线性函数拟合具有较强的收敛性和鲁棒性,并且有了更高的预测精度.
出处
《赤峰学院学报(自然科学版)》
2014年第22期29-32,共4页
Journal of Chifeng University(Natural Science Edition)