期刊文献+

基于环境选择和配对选择的多目标粒子群算法 被引量:1

Multi-objective particle swarm optimization based on environmental selection and pairing selection
下载PDF
导出
摘要 为了使多目标粒子群算法中种群粒子能够快速地收敛于帕累托最优边界,针对标准多目标粒子群算法中缺乏粒子评价标准以及种群个体历史最优值位置和全局最优值位置选择问题,提出了一种基于环境选择和配对选择策略的多目标粒子群算法。该算法在每次迭代时,采用SPEA2中的环境选择和配对选择策略及适应度值计算方法,以此来提高种群粒子之间的信息交换力度,减少标准多目标粒子群算法中大量的随机性,使种群粒子能够更快速地收敛于帕累托最优边界。经典测试函数的仿真实验结果表明,在标准多目标粒子群算法中运用SPEA2的环境选择、配对选择策略和适应度值计算方法,能够使种群粒子更快速地收敛于帕累托最优边界,验证了算法改进的可行性和有效性。 To make the population particle of PSO can more quickly converge to the Pareto optimal swarm,for the lacking of particle evaluation criteria and the weaker information exchange of the population particle for MOPSO,this paper proposed the environmental selection and pair selection strategy to MOPSO. When the algorithm was iterating,it used the environmental selection and pair selection strategy and the calculation method of fitness value in SPEA2,what depended to improve the efforts of information exchange between each particle populations,and reduced the randomness of standard MOPSO,what let the population particles could more quickly converge to the Pareto optimal boundary. Through the simulation of several classic test functions,the results show that the using of the environmental selection and pair selection strategy and the calculation method of fitness value of SPEA2 can let the population particle more quickly converge to Pareto optimal boundary in multi-objective particle swarm,what verify the feasibility and effectiveness of the improved algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2014年第12期3546-3549,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61105115) 江苏省自然科学基金资助项目(BK20131002)
关键词 多目标优化多目标粒子群优化算法 帕累托最优边界 环境选择和配对选择策略 multi-objective particle swarm optimization Pareto optimal boundary environmental selection and pairing selection strategy
  • 相关文献

参考文献11

二级参考文献94

共引文献95

同被引文献12

  • 1Potter M A,De Jong K A. A cooperative co-evolutionary approach to function optimization [ M ]. Parallel Problem Solving from Na- ture-PPSN Ⅲ. Springer Berlin Heidelberg, 1994.
  • 2Mahdavi S,Shiri M. Cooperative co-evolution with a new decomposi- tion method for large-scale optimization [ C ]. Evolutionary Computa- tion (CEC) ,2014 IEEE Congress on Publication ,2014 :1285-1292.
  • 3Antonio L M, Coello Coello C. Use of cooperative co-evolution for solving large scale multi-objectiveoptimization problems [ C ]. In Evolutionary Computation (CEC) ,2013 IEEE Congress on,2013: 2758-2765.
  • 4Omidvar M N, Li X, Mei Y, et al. Cooperative co-evolution with differential grouping for large scale optimization [ J ] .Evolutionary Computation, IEEE Transactions on,2014,18 ( 3 ) : 378-393.
  • 5Fan J, Wang J. Cooperative co-evolution for large-scale optimization based on kernel fuzzy clustering and variable trust region methods [ J]. Fuzzy Systems, IEEE Transactions on Volume,2014,22 ( 4 ) : 829-839.
  • 6Deb K,Pratap A,Agarwal S ,et al. A fast and elitist multi-objective genetic algorithm: NSGA-II [ J ]. IEEE Trans. On Evolutionary Computation, 2002,6 ( 2 ) : 182.
  • 7Zhang Q, Li H. MOEA/D:a multi-objective evolutionary algorithm based on decomposition [ J ]. IEEE Transactions on Evolutionary Computation,2007,11 (6) :712-731.
  • 8Kukkonen S, Lampinen J. GDE3 : The third evolution step of gener- alized differential evolution[ C]. In 2006 IEEE Congress on Evolu- tionary Computation ( CEC' 2009 ), Edinburgh, Scotland: IEEE Service Center,2009:443-450.
  • 9Zitzler E,Thiele L, Laumanns M, et al. Performance assessment of multi-objective optimizers:an analysis and review [ J ]. Evolutionary Computation, IEEE Transactions on ,2003,7 ( 2 ) : 117-132.
  • 10Beume N,Fonseca C M. On the complexity of computing the hy- per-volume indicator [ J ]. Evolutionary Computation, IEEE Trans- actions on Volume ,2009,13 ( 5 ) : 1075-1082.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部