期刊文献+

模拟退火教学式优化算法 被引量:7

Simulated annealing teaching-learning-based optimization algorithm
下载PDF
导出
摘要 针对教学式优化算法在求解组合优化问题时易陷入局部最优问题进行了研究,提出模拟退火教学式优化算法。利用模拟退火方法,在"教"与"学"两个阶段按照模拟退火计算的概率,随机接受个体中某一位较差解作为新解的一部分。通过增加群体多样性的方法,增强教学式优化算法逃离局部最优解的能力。分别对单模、多模和旋转函数进行仿真,并与其他算法进行了对比实验。结果表明,提出的方法在收敛速度和收敛精度上具有较好的性能。 This paper studied the problem that standard teaching-learning-based optimization algorithm( TLBO) easily converges to local optima when solving combinatorial optimization,and proposed a simulated annealing TLBO( SATLBO) algorithm. In the method,it used the simulated annealing algorithm. Randomly selected a bit of the bad individuals according to a calculated possibility of simulated annealing algorithm to the new population in the teacher phase and learner phase. It increased the ability of running away from local optima of TLBO by increasing the diversity of the population. It simulated the unmultimodal functions,multimodal functions and rotation functions,and compared the results with some other evolutionary computation algorithms. The results indicate that the improved algorithm has good performance in terms of convergence speed and accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2014年第12期3553-3556,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61304082 61203272) 安徽省自然科学基金资助项目(1308085MF82)
关键词 教学式优化算法 模拟退火算法 局部最优 组合优化 teaching-learning-based optimization algorithm simulated annealing algorithm local optima combinatorial optimization
  • 相关文献

参考文献12

  • 1HOLLAND J H. Adaptation in natural and artificial systems [ M ]. Cambridge : MIT Press, 1992.
  • 2聂立新,张天侠,郭立新.并行定向扰动的混合粒子群优化算法[J].计算机应用研究,2013,30(6):1633-1635. 被引量:5
  • 3ISLAM S M, DAS S, GHOSH S, et al. An adaptive differential evolu- tion algorithm with novel mutation and crossover strategies for global numerical optimization [ J]. IEEE Trans on Systems, Man, and Cybernetics-Part B:Cybernetics,2012,42(2):482-500.
  • 4何宗耀,王翔.蜂群—蚁群自适应优化算法[J].计算机应用研究,2012,29(1):130-134. 被引量:11
  • 5RAO R V,SAVASNI V J,VAKHARIA D P. Teaching-learning-based optimization:an optimization method for continuous non-linear large scale problems[J]. Information Sciences,2012,183(1) :1-15.
  • 6MATEJ C, SHIH-HSI L,LUKA M. A note on teaching-learning-based optimization algorithm [ J]. Information Sciences, 2012,212 ( 1 ) : 79-93.
  • 7VENKATA R R, SAVASNI V J, BALIC J. Teaching-learning-based optimization algorithm for unconstrained and constrained real-parame- ter optimization problems [ J ]. Engineering Optimization, 2011,44 ( 12 ) : 1447-1462.
  • 8VENKATA R R, SAVASNI V J,VAKHARIA D P. Teaching-learning- based optimization:a novel method for constrained mechanical design optimization problems [ J ]. Computer-Aided Design, 2011,43 ( 3 ) : 303-315.
  • 9王卓鹏,高国成,杨卫平.一种改进的快速模拟退火组合优化法[J].系统工程理论与实践,1999,19(2):73-76. 被引量:19
  • 10LIANG Jing, QIN Kai, SUGANTHAN P N, et al. Comprehensive lear- ning particle swarm optimizer for global optimization of muhimodal functions[ J]. IEEE Trans on Evolutionary Computation ,2006,10 (3) :281-295.

二级参考文献19

  • 1BULLNHEIMER B, HARTL R F, STRAUSS C. A new rank based version of the ant system : a computational study [ R ]. Vienna : WU Vienna Universing of Economics and Business, 1997.25- 38.
  • 2STUTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer Systems,2000,16(9) : 889-914.
  • 3DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem [J]. IEEE Trans on Evolutionary Computation, 1997,1 (1): 53-66.
  • 4BILCHEV G, PARMEE I. The ant colony metaphor for searching continuous design spaces [ C ]//Lecture Notes in Compute/Science, vol 993. Berlin : Springer-Verlag, 1995 : 25- 39.
  • 5MONMARCHE N, VENTURINI G, SLIMANE M. On how Pachycondyla apicalis ants suggest a new search algorithm[J]. Future Generation Computer Systems,2000,16 (9) : 937- 946.
  • 6DREO J, SIARRY P. A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions[C]//Lectare Notes in Computer Science, vol 2463. Berlin: Springer-Verlag,2002 : 216-221.
  • 7SOCHA K, DORIGO M. Ant colony optimization for continuous domains[ J]. European Journal of Operational Research, 2008, 185(3) : 1155-1173.
  • 8KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm [J]. Applied Soft Computing, 2008,8(1): 687-697.
  • 9杨若黎,顾基发.一种高效的模拟退火全局优化算法[J].系统工程理论与实践,1997,17(5):29-35. 被引量:101
  • 10唐焕文,实用数学规划导论,1986年

共引文献32

同被引文献69

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部