期刊文献+

脑电Laplacian空域滤波的改进算法 被引量:1

Improved EEG Laplacian spatial filtering algorithm
下载PDF
导出
摘要 Laplacian空域滤波通过被关注的通道与相邻通道信号转换,能有效地提高脑电信号的信噪比,经典的Laplacian空域滤波矩阵由通道之间的距离确定。该方法依赖于相应通道定位的准确性,实际应用中不能保证电极精准安放并存在个体差异,影响了该方法的应用效果。为了提高该算法的通用性,采用高斯模型改进经典Laplacian空域滤波算法,根据用户调试数据确定模型相关参数,进而确定空域滤波矩阵。采用国际脑机接口竞赛BCI competition 2005 IV数据集验证滤波后的效果,总体比经典Laplacian方法识别准确度提高10个百分比,采用改进方法滤波后不同类间距离增大、同类间距离减小,提高了信号的信噪比。 Through channel and adjacent channels signal conversion,Laplacian spatial filter can effectively improve the EEG signal to noise ratio. Laplacian spatial filtering method was determined by the distance between the channels. The method is tigthly dependent on the accuracy positioning of the corresponding channel,but it is very difficult to put electrode on accuracy position in practical application. Otherwise the method recognition rate sharply declined. In order to improve the robustness of the algorithm,this paper proposed an improved Laplacian spatial filtering algorithm method,which determined spatial Laplacian filter coefficients according to signal calibrating. It used brain-computer interface competition( BCI competition) 2005 IV data sets to validate the spatial filtering method. The result demonstrates that it improves the signal-to-noise ratio. The method recognition rate has generally increased by 10 percentage than Laplacian method. It demonstrates the improved method increases the distance between different classes,decreases between similar distance and improves the signal to noise ratio.
出处 《计算机应用研究》 CSCD 北大核心 2014年第12期3587-3590,共4页 Application Research of Computers
基金 四川省人社厅留学择优资助项目(12ZXW07)
关键词 空域滤波器 拉普拉斯方法 滤波器 运动想象 脑电信号 spatial filter Laplacian filter motor imagery EEG
  • 相关文献

参考文献12

  • 1过筠,章惠英,章雅青,谢青,袁莉,徐云,金娜.运动想象疗法对脑卒中偏瘫患者下肢运动功能的影响[J].上海交通大学学报(医学版),2012,32(10):1351-1355. 被引量:25
  • 2谢财忠,唐军凯.运动想象疗法与脑卒中偏瘫康复[J].医学研究生学报,2012,25(11):1221-1224. 被引量:14
  • 3ORTNER R, ALLISON B Z, KORISEK G, et al. An SSVEP BCI to control a hand orthosis for persons with tetraplegia[ J]. IEEE Trans on Neural System Rehabilitation Engineering ,2011,19 ( 1 ) : 1 -5.
  • 4YU Tian-you, LI Yuan-qing, LONG Jin-yi,et al. Surfing the Internet with a BCI mouse[J]. Neural Engineering,2012,9(3) :036012.
  • 5JEON Y, NAM C S, KIM Y J, et al. Event-related (De)synchroni- zation(ERD/ERS) during motor imagery tasks:implication for brain- computer interfaces [ J ]. International Journal of Industrial, 2011, 41 (5) :428-436.
  • 6李翔,高小榕,高上凯.一种基于两种不同范式的混合型脑-机接口系统[J].中国生物医学工程学报,2012,31(3):326-330. 被引量:13
  • 7DAPRATI E, NICO D, DUVAL S, et al. Different motor imagery modes following brain damage [ J ]. CoFtex, 2010, 46 ( 8 ) : 1016- 1030.
  • 8McFARLAND D J, McCANE L M, DAVID S V, et al. Spatial filter selection for EEG-based communication [ J ]. Electroenceph Clin Neurophysiol, 1997,103(3 ) :386-394.
  • 9NASIHATKON B, BOOSTANI R,JAHROMI M Z. An efficient hybrid linear and kernel CSP approach for EEG feature extraction[ J]. Neu- rocomputing ,2009,73( 1-3 ) :432-437.
  • 10LU Jun, McFARLAND D J, WOLPAW J R. Adaptive Laplacian fil- tering for sensorimotor rhythm-based brain-computer interfaces [ J ]. dournal of Neural Engineering,2012,10( 1 ):016002.

二级参考文献54

共引文献46

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部