期刊文献+

基于Hadoop的多特征协同过滤算法研究 被引量:1

Research on multi-feature collaborative filtering algorithm based on Hadoop
下载PDF
导出
摘要 协同过滤是互联网推荐系统的核心技术,针对协同过滤推荐算法中推荐精度和推荐效率以及数据可扩展性问题,采用灰色关联相似度,设计和实现了一种基于Hadoop的多特征协同过滤推荐算法,使用贝叶斯概率对用户特征属性进行分析,根据分析结果形成用户最近邻居集合,通过Hadoop中的MapReduce模型构建预测评分矩阵,最后基于邻居集和用户灰色关联度形成推荐列表。实验结果表明,该算法提高了推荐的有效性和准确度,且能有效支持较大数据集。 Collaborative filtering is the critical technology for Internet recommendation system. In order to deal with the precision,efficiency and the scalability of data set in the recommendation algorithm,this paper proposed a multi-feature collaborative filtering algorithm with grey correlation similarity based on Hadoop architecture. With the analytic result of users’ features based on Bayesian probability model,it formed the effective nearest neighbors’ set. It built the prediction score matrix with the MapReduce model of Hadoop. At last,it formed a recommendation list with the grey correlation similarity model based on the effective nearest neighbors’ set and the prediction score matrix. It improved experimental results show that the efficiency and precision of recommendation. And this algorithm is able to deal with the large-scale data set.
出处 《计算机应用研究》 CSCD 北大核心 2014年第12期3621-3624,共4页 Application Research of Computers
基金 中央高校基本科研业务费专项资金资助项目(GK201002028 GK201101001) 陕西师范大学学习科学交叉学科培育计划资助项目
关键词 协同过滤 HADOOP 灰色关联度 贝叶斯概率 collaborative filtering Hadoop grey correlation similarity Bayesian probability
  • 相关文献

参考文献13

  • 1赵琴琴,鲁凯,王斌.SPCF:一种基于内存的传播式协同过滤推荐算法[J].计算机学报,2013,36(3):671-676. 被引量:49
  • 2许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:545
  • 3ROBLES V, LARRANAGA P, MENASALVAS E,et al. Improvement of naive Bayes collaborative fihering using interval estimation [ C ]// Proe of IEEE/WIC International Conference on Web Intelligence. 2003 : 168-174.
  • 4XUE G R, LIN C, YANG Q,et al. Scalable collaborative filtering u- sing cluster-based smoothing [ C ]//Proc of the 28th Annual Interna- tional ACM SIGIR Conference on Research and Development in Infor- mation Retrieval. 2005 : 114-121.
  • 5VOZALIS M G, MARGARITIS K G. Applying SVD on item-based filtering[ C ]//Proc of the 5tb International Conference on Intelligent Systems Design and Applications. 2005: 464-469.
  • 6LV L, MEDO M, YEUNG C H, et al. Recommender systems [ J ]. Physics Reports,2012,519( 1 ) :1-49.
  • 7CANDILLIER L, MEYER F, FESSANT F. Designing specific weigh- ted similarity measures to improve collaborative filtering systems [ M]//Advances in Data Mining. Medical Applications, E-com- merce, Marketing, and Theoretical Aspects. Berlin: Springer, 2008: 242-255.
  • 8ADOMAVICIUS G,TUZHILIN A. Toward the next generation of recom- mender systems: a survey of the state of the art and possible extensions [J]. Knowledge and Data Engineering, 2005,17(6) :734.-749.
  • 9NGUYEN H V, BAIL. Cosine similarity metric learning for face veri- fication [ M ]//Computer Vision. Berlin : Springer,2011:709-720.
  • 10朱钥,贾思奇,张俊魁,李琦.基于Hadoop的城市交通碳排放数据挖掘研究[J].计算机应用研究,2011,28(11):4213-4215. 被引量:9

二级参考文献94

共引文献597

同被引文献12

  • 1Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews [ C ]//Pro- ceedings of the 1994 ACM conference on computer supported cooperative work. [ s. 1. ] :ACM, 1994 : 175-186.
  • 2Sarwar B, Karypis G, Konstan J, et al. Item-based collabora- tive filtering recommendation algorithms [ C ]//Proceedings of the 10th international conference on World Wide Web. [ s. 1. ] :ACM,2001:285-295.
  • 3Adomavicius G, Tuzhilin A. Towards the next generation of recommender systems : a survey of the state- of - the - art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering,2005,17 (6) :734-749.
  • 4Billsus D, Pazzani M. Learning collaborative information filters [ C ]//Proceedings of the 15th international conference on ma- chine learning. [ s. 1. ] : [ s. n. ], 1998.
  • 5Zhou K. Combining item rating similarity and item classifica- tion similarity for better recommendation quality [ J ]. Ad- vanced Materials Research,2012,461:289-292.
  • 6Miller B N, Albert I, Lam S K, et al. MovieLens unplugged:ex- periences with occasionally connected recommender system [ C]//Proceedings of the 8th international conference on in- teUigent user interfaces. New York : ACM ,2003:263-266.
  • 7许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:545
  • 8黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 9嵇晓声,刘宴兵,罗来明.协同过滤中基于用户兴趣度的相似性度量方法[J].计算机应用,2010,30(10):2618-2620. 被引量:27
  • 10李鹏飞,吴为民.基于混合模型推荐算法的优化[J].计算机科学,2014,41(2):68-71. 被引量:20

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部