期刊文献+

基于箱聚类的差分隐私直方图发布方法研究 被引量:3

Research of differentially private histogram publishing based on clustering bins
下载PDF
导出
摘要 在现有的基于差分隐私保护的直方图发布聚类处理算法中,没有算法考虑对方差较小与方差较大的直方图计数集加以区别对待,从而在处理方差较小的直方图计数集时造成算法复杂度过大。针对方差较小的直方图计数集,提出一种基于临近箱计数差值的分割策略。首先,通过计算相邻单位箱计数的差值确定分割边界;然后,根据重构误差与加噪误差的总量变化判断每次分割的可行性;最后,通过理论分析和实验仿真,该算法在保证发布数据准确度的同时,极大地提高了算法效率,从而验证了该算法的有效性。 In current clustering processing algorithms of histogram publishing based on differential privacy preserving,there was not algorithm which differentiate between histogram counts with smaller variance and histogram counts with larger variance.And it caused the waste of algorithm complexity when dealing with histogram with smaller variance. This paper proposed a segmentation algorithm based on the D-value of adjacent bins. It determined the segmentation boundary through calculating the Dvalue of adjacent unit bins and then determined the feasibility of each division based on the sum value of reconstruction error and the amount of noise. It verified the effectiveness of the proposed algorithm through the experimental simulation and theoretical analysis. This algorithm ensures the accuracy of data released. What’s more important is that it greatly improves the efficiency of the algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2014年第12期3700-3703,3710,共5页 Application Research of Computers
基金 中央高校基本科研业务费资助项目(JUSRP111A49)
关键词 差分隐私 直方图发布 聚类处理 算法复杂度 差值 分割边界 differential privacy histogram publishing clustering processing algorithm complexity D-value segmentation boundary
  • 相关文献

参考文献19

  • 1DWORK C, McSHERRY F, NISSIM K,et al. Calibrating noise to sensitivity in private data analysis [ C ]//Proe of Theory of Cryptogra- phy. Berlin : Springer, 2006:265- 284.
  • 2HAY M, RASTOGI V, MIKLAU G, et al. Boosting the accuracy of differentially private histograms through consistency [ C ]//Proc of the 36th Conference of Very Large Databases. Istanbul: VLDB Endow- ment, 2010 : 1021-1032.
  • 3XIAO Yong-hui, XIONG Li, YUAN Chun. Differentially private data release through multidimensional partitioning [ C ]//Proc of Secure Data Management. Berlin: Springer, 2010: 150-168.
  • 4XU Jia, ZHANG Zhen-jie, XIAO Xiao-kui, et al. Differentially pri- vate histogram publication [ C ]//Proc of the 28th IEEE International Conference on Data Engineering. 2012 : 32-43.
  • 5XIAO Xiao-kui, WANG Guo-zhang, GEHRKE J. Differential privacy via wavelet transforms [ J]: IEEE Trans on Knowledge and Data Engineering, 2011,23(8) : 1200-1214.
  • 6RASTOGI V, NATH S. Differentially private aggregation of distribu- ted time-series with transformation and encryption[ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York : ACM Press, 2010: 735-746.
  • 7ACS G, CASTELLUCCIA C, CHEN Rui. Differentially private histo- gram publishing through lossy compression [ C ]//Proc of the 12th IEEE International Conference on Data Mining. 2012: 1-10.
  • 8DWORK C. Differential privacy [ C ]//Proc of Automata, Languages and Programming. Berlin : Springer, 2006 : 1-12.
  • 9DWORK C. Differential privacy: a survey of results[ C]//Proc of the 5th Theory and Applications of Models of Computation. Berlin: Springer, 2008 : 1 - 19.
  • 10DWORK C, SMITH A. Differential 'privacy for statistics: what we know and what we want to leam[ J]. Journal of Privacy and Confi- dentiality, 2009, 1 (2) :135-154.

二级参考文献42

  • 1SWEENEY L. ^-anonymity: a model for protecting privacy[ J ]. Inter-national Journal on Uncertainty, Fuzziness and Knowledge-based Systems,2002,10(5) :557-570.
  • 2SWEENEY L. Achieving A>anonymity privacy protection using gener-alization and suppression[ J]. International Journal on Uncertainty,Fuzziness and Knowledge-based Systems, 2002,10(5) : 571-588.
  • 3Li Ning-hui, LI Tian-cheng, VENKATASUBRAMANIAN S. (-closeness :privacy beyond A:-anonymity and /-diversity [ C ] //Proc of the 23rd International Conference on Data Engineering. Washington DC: IEEE Computer Society ,2007 :106-115.
  • 4MACHANAVAJJHALA A,KIFER D, GEHRKE J, et al. /-diversity; privacy beyond A:-anonymity [ C ] //Proc of the 22nd International Conference on Data Engineering. Washington DC:IEEE Computer Society,2006 :24-35.
  • 5CORMODE G,PROCOPIUC M,SRIVASTAVA D. et aL Differentially private publication of sparse data [ J ]. ArxiV Preprint arXiv : 1103. 0825,2011.
  • 6SARATHY R,MURALIDHAR K. Some additional insights on applying differential privacy for numeric data [ C ]//Proc of International Conference on Privacy in Statistical Databases. Berlin : Springer-Ver-lag,2010:210-219.
  • 7DWORK C, NAOR M,PITASSI T,et al. Pan-private streaming algorithms [C ] //Proc of the 1st Symposium on Innovations in Computer Science. Beijing:Tsinghua University Press, 2010.
  • 8DWORK C, NAOR M,PITASSI T, et al. Differential privacy under continual observation [ C ]//Proc of the 42nd ACM Symposium on Theory of Computing. New York: ACM Press,2010:715-724.
  • 9LI Ning-hui, QARDAJI W,SU Dong. Provably private data anony-mization: or, A:-anonymity meets differential privacy, CERIAS TR 2010-24[ R] . West Lafayette; Center for Education and Research Information Assurance and Security,Purdue University ,2010.
  • 10ZHOU Shu-heng, LIGETT K, WASSERMAN L. Differential privacy with compression [ C ] //Proc of IEEE International Symposium on Information Theory. Washington DC: IEEE Computer Society, 2009: 2718-2722.

共引文献39

同被引文献24

  • 1DWORK C. Differential privacy in new setting[ C]// SODA 2010: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2010:174 - 183.
  • 2DWORK C. The promise of differential privacy: a tutorial on algo- rithmic techniques[ C]//Proceedings of the 2011 IEEE 52nd Annu- al Symposium on Foundations of Computer Science. Piscataway, NJ: IEEE, 2011:1 -2.
  • 3付艳艳,付浩,谢幸,等.社交网络匿名与隐私保护[J].中国计算机学会通讯,2014(6):51-58.
  • 4BLUM A, DWORK C, McSHERRY F, et al. Practical privacy: the SuLQ framework[ C]// PODS 2005: Proceedings of the Twen- ty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Princi- ples of Database Systems. New York: ACM, 2005:128 - 138.
  • 5CLIFTON C, KANTARCIOGLU M, VAIDYA J, et al. Tools for privacy preserving distributed data mining[ J]. ACM SIGKDD Ex- plorations Newsletter, 2002, 4(2):28-34.
  • 6DOMINGO-FERRER J. Microaggregatlon or database and location privacy[ C]// NGITS 2006: Proceedings of the 6th International Conference on Next Generation information Technologies and Sys- tems, LNCS 4032. Piscataway, NJ: IEEE, 2006: 106- 116.
  • 7康达周,徐宝文,陆建江,李言辉.支持模糊隶属度比较的扩展模糊描述逻辑[J].软件学报,2008,19(10):2498-2507. 被引量:8
  • 8黄春梅,费耀平,李敏,戴弋,刘娇.基于多维泛化路径的K-匿名算法[J].计算机工程,2009,35(2):154-156. 被引量:6
  • 9王智慧,许俭,汪卫,施伯乐.一种基于聚类的数据匿名方法[J].软件学报,2010,21(4):680-693. 被引量:49
  • 10夏赞珠,韩建民,于娟,郭腾芳.用于实现(k,e)-匿名模型的MDAV算法[J].计算机工程,2010,36(15):159-161. 被引量:6

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部