期刊文献+

一种提取脑内深部髓质静脉主干的方法

New method for trunk extraction of deep medullary veins
下载PDF
导出
摘要 根据脑内深部髓质静脉低对比度、管径细小、偏水平分布、受干扰严重等特征,提出一种基于海赛矩阵的脑内深部髓质静脉主干提取方法,该方法通过固定尺度海赛矩阵的特征值构造出一种筛选器初步筛选出静脉主干,并从形态学上连接断开的主干、剔除伪主干。用手动分割金标准进行对照实验,实验结果表明本方法与金标准相比达到一个较高的重合度,但是主干末梢与背景融合处没能很好地处理。 According to the characteristics of DMVs,including low contrast,small diameter,horizontal distribution and severely disrupted,this paper presented a novel DMVs trunk extraction method based on the Hessian matrix. Firstly,it extracted the trunk by a preliminary screening filter constructed by the eigenvalues of a fixed scale Hessian matrix,and then connected broken trunk and eliminated artifacts morphologically. Experimental results show that the proposed method extracts the DMVs trunk quickly and effectively,and the result has a high similarity with manual segmentation. But the mixed place of trunk endings and the background can not be handled well.
出处 《计算机应用研究》 CSCD 北大核心 2014年第12期3873-3875,共3页 Application Research of Computers
基金 国家杰出青年基金资助项目(60788101) 国家自然科学基金资助项目(60705016 61001215) 浙江省自然科学基金资助项目(LY12F03003)
关键词 脑白质病变 脑内深部髓质静脉 海赛矩阵 主干提取 主干连接 磁敏感加权成像 white matter lesion deep medullary veins(DMVs) Hessian matrix trunk extraction trunk connection enhanced susceptibility weighted angiography
  • 相关文献

参考文献16

  • 1GAO Fu-qiang, NOOR R, KEITH J, et al. Relationship between collagenosis of the deep medullary veins and periventricular white matter hyperintensities on MRI in Alzheimer' s disease : does one size fit all? [J]. Alzheimer's & Dementia, 2012, 8(4) : 297.
  • 2杜鹃,赖成虹,刘萍.不同类型脑小血管病伴发非痴呆血管性认知功能损害的研究[J].山东医药,2012,52(32):63-65. 被引量:7
  • 3SINNECKER T, BOZIN I, DORR J, et al. Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study[ J]. Multiple Sclerosis Journal, 2013, 19(3) :316-325.
  • 4LOU Min, LIEB K, SELIM M. The relationship between hematoma iron content and perihematoma edema: an MRI study[ J]. Cerebro- vascular Diseases, 2009, 27(3) : 266-271.
  • 5BENNI]NK I4 E, ASSEN H C, STREEKSTRA G J, et al. A novel 3D multi-scale lineness filter for vessel detection [ M ]//Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer- Verlag, 2007: 436-443.
  • 6BAUER C, BISCHOF H. A novel approach for detection of tubular objects and its application to medical image analysis [ M ]//Pattern Recognition. Berlin: Springer-Verlag, 2008 : 163-172.
  • 7NIMURA Y, KITASAKA T, MORI K. Blood vessel segmentation using line-direction vector based on Hessian analysis [ C]//Proc of SPIE 7623, Medical Imaging: Image Processing. 2010: 76233Q- 76233Q-9.
  • 8FRANGI A F, NIESSEN W J, VINCKEN K L, et al. Multiscale ves- sel enhancement filtering[ M]//Medical Image Computing and Com- puter-Assisted Interventation. Berlin: Springer-Verlag, 1998: 130- 137.
  • 9SATO Y, NAKAJIMA S, ATSUMI H, et al. 3D muhi-scale line filter for segmentation and visualization of curvilinear structures in medical images [ C ]//CVRMed-MRCAS. Berlin: Springer-Verlag, 1997: 213-222.
  • 10LORENZ C, CARLSEN I C, BUZUG T M, et al. Multi-scale line segmentation with automatic estimation of width, contrast and tangen- tial direction in 2D and 3 D medical images [ C ] //CVRMed-MRCAS. Berlin: Springer-Verlag, 1997: 233-242.

二级参考文献47

  • 1许燕,胡广书,商丽华,耿进朝.基于Hessian矩阵的冠状动脉中心线的跟踪算法[J].清华大学学报(自然科学版),2007,47(6):889-892. 被引量:13
  • 2Kimmel R, Bruckstein AM. Regularized Laplacian zero crossings as optimal edge integrators. Int'l Journal of Computer Vision, 2003,53(3):225-243. [doi: 10.1023/A:1023030907417].
  • 3Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(2):158-175. [doi: 10.1109/34.368173].
  • 4Caselles V. Geometric models for active contours. In: Proc. of the Int'l Conf. on Image Processing. 1995.9-12. [doi: 10.1109/ICIP. 1995.537567].
  • 5Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989,42(5):577-685. [doi: 10.1002/cpa.3160420503].
  • 6Chan TF, Vese LA. Active contours without edges. IEEE Trans. on Image Processing, 2001,10(2):266-277. [doi: 10.1109/83. 902291 ].
  • 7Tsai A, Yezzi AJr, Wells WlII, Tempany C, Tucker D, Fan A, Crrimson WE, Willsky A. Model-Based curve evolution technique for image segmentation. In: Proe. of the 2001 IEEE Conf. on Computer Society. 2001. 1-463-1-468. [doi: 10.1109/CVPR.2001. 990511 ].
  • 8Michailovich O, Rathi Y, Tannenbaum A. Image segmentation using active contours driven by the bhattacharyya gradient flow. IEEE Trans. on Image Processing, 2007,16(11):2787-2801. [doi: 10.1109/TIP.2007.908073].
  • 9Chunming L, Chiu-Yen K, Gore JC, Zhaohua D. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. on Image Processing, 2008,17(10): 1940-1949. [doi: 10.1109/TIP.2008.2002304].
  • 10Lankton S, Tannenbaum A. Localizing region-based active contours. IEEE Trans. on Image Processing, 2008,17(11):2029-2039. [doi: 10.1109/TIP.2008.2004611].

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部