摘要
根据脑内深部髓质静脉低对比度、管径细小、偏水平分布、受干扰严重等特征,提出一种基于海赛矩阵的脑内深部髓质静脉主干提取方法,该方法通过固定尺度海赛矩阵的特征值构造出一种筛选器初步筛选出静脉主干,并从形态学上连接断开的主干、剔除伪主干。用手动分割金标准进行对照实验,实验结果表明本方法与金标准相比达到一个较高的重合度,但是主干末梢与背景融合处没能很好地处理。
According to the characteristics of DMVs,including low contrast,small diameter,horizontal distribution and severely disrupted,this paper presented a novel DMVs trunk extraction method based on the Hessian matrix. Firstly,it extracted the trunk by a preliminary screening filter constructed by the eigenvalues of a fixed scale Hessian matrix,and then connected broken trunk and eliminated artifacts morphologically. Experimental results show that the proposed method extracts the DMVs trunk quickly and effectively,and the result has a high similarity with manual segmentation. But the mixed place of trunk endings and the background can not be handled well.
出处
《计算机应用研究》
CSCD
北大核心
2014年第12期3873-3875,共3页
Application Research of Computers
基金
国家杰出青年基金资助项目(60788101)
国家自然科学基金资助项目(60705016
61001215)
浙江省自然科学基金资助项目(LY12F03003)
关键词
脑白质病变
脑内深部髓质静脉
海赛矩阵
主干提取
主干连接
磁敏感加权成像
white matter lesion
deep medullary veins(DMVs)
Hessian matrix
trunk extraction
trunk connection
enhanced susceptibility weighted angiography