期刊文献+

单晶γ-TiAl合金微观滑移机制的研究 被引量:2

Study on the mechanism of micro-slip for γ-TiAl alloy with single crystal
下载PDF
导出
摘要 针对单晶γ-TiAl合金微观滑移机制方面研究的不足,建立了单晶γ-TiAl合金单轴拉伸时晶体滑移几何模型,根据几何模型中各夹角之间的几何关系和由Weiss晶带法则给出的滑移方向,计算出了单滑移系中各个滑移方向上的Schmid因子;通过对比计算结果发现在设定条件下晶体更易产生滑移的方向为(001)[01-1]和(11-1)[110];在由主滑移系和交滑移系组成的双滑移系同时开动时,计算出了临界外加拉伸应变为0.633;通过数值模拟验证了所给出的单晶γ-TiAl合金单轴拉伸时的微观滑移机制的正确性。 Aimed at the deficiency of the study about the mechanism of micro-slip forγ-TiAl single crystal.The model of crystal slip forγ-TiAl single crystal with uniaxial tension was established in this paper.The Schmid factors along different slip directions were calculated based on the geometry relationship in model and the slip directions given by Weiss Zone Law.The result that crystal will be easier slip along (001)[01-1]and (11-1)[110] than other directions was obtained by comparing the calculated results.Besides,the result that critical value of external tensile strain under the given case of double slip system was 0.633 was got.Furthermore,the mecha-nism for micro-slip ofγ-TiAl alloy with monocrystal under uniaxial tension given in this paper is correct,which was verified by numerical simulation.
出处 《功能材料》 EI CAS CSCD 北大核心 2015年第1期1103-1107,共5页 Journal of Functional Materials
基金 教育部长江学者和创新团队发展计划资助项目(IRT1140) 甘肃省高等学校科研资助项目(2014A-033)
关键词 Γ-TIAL合金 单晶 微观滑移机制 单轴拉伸 数值仿真 γ-TiAl alloy single crystal mechanism of micro-slip uniaxial tension numerical simulation
  • 相关文献

参考文献27

  • 1RecinaV,Lundstr-mD,KarlssonB.Tensile,creep,andlowGcyclefatiguebehaviorofacastγGTiAlGbasedalloyforgasturbineapplications [J].Metallurgicaland MaterialsTransactionsA,2002,33A:2869-2881.
  • 2FengRC,RuiZY,ZhangGT,etal.ImprovedmethodoffatiguelifeassessmentforTiAlalloys[J].StrengthofMaterials,2014,46(2):183-190.
  • 3LiYongquan,XieFaqin,WuXiangqing,etal.EffectsofactivatorandAlonthemicrostructuresofSiGAlGYcoGdepGositioncoatingsonTiAlalloy[J].JournalofFunctionalMaterials,2014,45(9):9022-9023.
  • 4TaoLin,LiuXiaoting,ShaoHuiping,etal.PreparationofhighNbGTiAlalloybygelcasting method[J].JournalofFunctionalMaterials,2013,44(22):3359-3362.
  • 5Clemens H,MayerS.Design,processing,microstrucGture,properties,andapplicationsofadvancedintermetalGlicTiAlalloys [J].Advanced Engineering Materials,2013,15(4):191-215.
  • 6Marketz W T,FischerF D,Clemens H.Deformationmechanisms in TiAl intermetallics-experiments andmodeling[J].InternationalJournalofPlasticity,2003,19:281-321.
  • 7ClemensH,SmarslyW.LightGweightintermetallictitaniGumaluminides-statusofresearchanddevelopment[J].AdvancedMaterialsResearch,2011,278:551-556.
  • 8DasG,KestlerH,ClemensH,etal.SheetgammaTiAl:statusandopportunities[J].JOM,2004,56(11):42G45.
  • 9TetsuiT.ApplicationofTiAlinaturbochargerforpasGsengervehicles [J].Advanced Engineering Materials,2001,3(5):307-310.
  • 10TetsuiT.GammaTialuminidesfornonGaerospaceappliGcations[J].CurrentOpinioninSolidState& MaterialsScience,1999,4:243-248.

二级参考文献5

  • 1吴东海 胡赓祥 等.-[J].电子显微学报,待发表,.
  • 2吴东海,博士学位论文,1996年
  • 3Hug G,Philos Mag A,1986年,54卷,47页
  • 4吴东海,博士学位论文,1996年
  • 5吴东海,电子显微学报

共引文献9

同被引文献28

  • 1宫子琪,周峰,柴丽华,陈子勇,相志磊,聂祚仁.TiAl合金断裂韧性的影响因素及其韧化机制[J].材料科学与工程学报,2014,32(3):465-468. 被引量:8
  • 2曹睿,陈剑虹,朱浩,张继,王国珍.γ-TiAl基合金的韧化机理及途径[J].材料科学与工程学报,2004,22(5):674-679. 被引量:5
  • 3曹睿,张继,姚海军,陈剑虹.全层TiAl合金裂纹扩展阻力的研究[J].材料科学与工程学报,2006,24(3):341-345. 被引量:6
  • 4雷明霞,曹睿,陈剑虹,张继.加载速率对TiAl基合金断裂机理的影响[J].稀有金属材料与工程,2006,35(11):1730-1734. 被引量:8
  • 5Clemens H, Mayer S. Design, processing, microstruc-ture, properties, and applications of advanced inter metal-lic TiAI alloys[J]. Advanced Engineering Materials, 2013, 15(4) :191- 215.
  • 6Marketz W T, Fischer F D, Clemens H. Deformation mechanisms in TiAI intermetallics-experiments and modeling [J]. International Journal of Plasticity, 2003, 19(3) :281-321.
  • 7Clemens H, Smarsly W. Light-weight intermetallic titani- umaluminides- status of research and development[J]. Advanced Materials Research, 2011, 278: 551-556.
  • 8Yuan L, Shan D, Guo B. Molecular dynamics simulation of tensile deformation of nano-single crystal aluminum[J]. Journal of Materials Processing Technology, 2007, 184(1) : 1 -5.
  • 9Ma L, Xiao S, Deng H, et al. Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading[J]. International Journal of Fatigue, 2014, 68(11):253-259.
  • 10Sung P H, Wu C D, Fang T H. Effects of temperature, loading rate and nanowire length on torsional deformation and mechanical properties of aluminium nanowires investigated using molecular dynamics simulation[J]. Journal of Physics D Applied Physics, 2012, 45(21) :428-437.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部