期刊文献+

标度变换与变系数非线性发展方程的精确解

Scaling Transformations and Exact Solutions for Several Nonlinear Evolution Equations with Variable Coefficients
下载PDF
导出
摘要 将Cariello和Tabor提出的求解不可积非线性发展方程精确解的方法推广到变系数方程的情形,并通过求解奇异流形函数的约束方程组和由标度变换引出的相似约化方程给出了变系数Burgers方程,变系数KdV-Burgers方程,变系数Newell-Whitehead方程的精确解. The method to solve non-integrable nonlinear evolution equations given by Cariello and Tabor is generalized to the case of variable coefficient equations. The exact solutions for the variable coefficient Burgers equation, KdV-Burgers equation and Newell-Whitehead equation are presented through solving the restricted equations of singular manifold functions and the similarity reduction equations induced from the scaling transformation.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期569-573,共5页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金资助项目(10461006 11261037) 内蒙古师范大学"十百千"人才培养工程项目(RCPY-2-2012-K-033)
关键词 PAINLEVÉ分析 变系数非线性方程 标度变换 Painlev6 analysis variable coefficient nonlinear equation scaling transformation
  • 相关文献

参考文献6

  • 1Kruskal M D,Joshi N, Halburd R. Analytic and asymptotic methods for nonlinear singularity analysis: A review and extensions of tests for the Painlev6 property[J]. Lecture Notes in Physics, 1997,95:171-205.
  • 2Weiss J, Tabor M,Carnevale J. The Painlev6 property for partial differential equations[J]. J Math Phys, 1983, 24:522-526.
  • 3Ablowitz M J,Ramani A,Segur H. Nonlinear evolution equations and ordinary differential equations of Painlev6 type[J]. Lett Nuovo Cimento, 1978,23:333-338.
  • 4Cariello F,Tabor M. Similarity reductions from extended Painlev6 expansions for non-integrable evolution equa- tions[J]. Physica D, 1991,53 : 59-70.
  • 5史秀珍,斯仁道尔吉.变系数Burgers方程与KdV-Burgers方程的试探函数解[J].内蒙古大学学报(自然科学版),2012,43(1):23-26. 被引量:4
  • 6Newell A C, Whitehead J A. Finite band width finite amplitude conviction[J]. J Fluid Mech, 1969,35(2) :279- 330.

二级参考文献7

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部