期刊文献+

A discussion on improving typhoon observation through radar by scanning the negative elevation angle

A discussion on improving typhoon observation through radar by scanning the negative elevation angle
下载PDF
导出
摘要 Certain feasibilities and features were discussed in typhoon detection by radar with a negative elevation angle according to the relationship between the remote detecting range and the elevation angle of the new generation weather radar, in order to rectify the disadvantages of detecting capability for remote low-level echo with a lowest elevation angle of 0.5° in the common detecting mode. The data obtained from detecting the typhoon of Haitang and Changmi with radar for their negative elevation angles and the observed data for the common lowest elevation angle of 0.5° were compared to each other. The results showed that the detection of remote low level cloud system with radar could be improved by using the negative elevation angle, and the structure and the evolution trend of a typhoon could be better judged. The increasing degree of detection for negative elevation angles in the current volume scanning mode should be helpful for predicting the intensity and developing trend of windstorms, to further improve the capability of warning and nowcasting. The detection of negative elevation angle could also help reveal the development and change of typhoon's low level cloud system. As far as the typhoons of Haitang and Changmi were concerned, the detecting area of Changmi was increased by 1.09 times with the negative elevation angle of 0.31°, compared with the elevation angle of 0.48° if the threshold value for the sea echo within 100 km was eliminated. Several volume scans of Haitang were increased by 2.1%-7.9% for the negative elevation angle of 0.36° compared with the elevation angle of 0.49° . Therefore, the radar detecting capability of typhoons could be improved by the detection of negative elevation angles to some extent. This could make up for the disadvantages of a low detecting capability for remote low-level echo in the common detecting mode. At the same time, a negative elevation angle could be easily influenced by the ground clutter and the close sea wave clutter which interfered with the assessment of the typhoon structure at times. Assessing these advantages and disadvantages, some advantages for using negative elevation angle were discovered from the observation of the typhoons Haitang and Changmi, if the negative elevation angle with radar was selected reasonably in some conditions. As a result, a certain value arose for improving and monitoring the early warning system for typhoons, paying close attention to the detection of negative elevation angles. Certain feasibilities and features were discussed in typhoon detection by radar with a negative elevation angle according to the relationship between the remote detecting range and the elevation angle of the new generation weather radar, in order to rectify the disadvantages of detecting capability for remote low-level echo with a lowest elevation angle of 0.5° in the common detecting mode. The data obtained from detecting the typhoon of Haitang and Changmi with radar for their negative elevation angles and the observed data for the common lowest elevation angle of 0.5° were compared to each other. The results showed that the detection of remote low level cloud system with radar could be improved by using the negative elevation angle, and the structure and the evolution trend of a typhoon could be better judged. The increasing degree of detection for negative elevation angles in the current volume scanning mode should be helpful for predicting the intensity and developing trend of windstorms, to further improve the capability of warning and nowcasting. The detection of negative elevation angle could also help reveal the development and change of typhoon's low level cloud system. As far as the typhoons of Haitang and Changmi were concerned, the detecting area of Changmi was increased by 1.09 times with the negative elevation angle of 0.31°, compared with the elevation angle of 0.48° if the threshold value for the sea echo within 100 km was eliminated. Several volume scans of Haitang were increased by 2.1%-7.9% for the negative elevation angle of 0.36° compared with the elevation angle of 0.49° . Therefore, the radar detecting capability of typhoons could be improved by the detection of negative elevation angles to some extent. This could make up for the disadvantages of a low detecting capability for remote low-level echo in the common detecting mode. At the same time, a negative elevation angle could be easily influenced by the ground clutter and the close sea wave clutter which interfered with the assessment of the typhoon structure at times. Assessing these advantages and disadvantages, some advantages for using negative elevation angle were discovered from the observation of the typhoons Haitang and Changmi, if the negative elevation angle with radar was selected reasonably in some conditions. As a result, a certain value arose for improving and monitoring the early warning system for typhoons, paying close attention to the detection of negative elevation angles.
出处 《Research in Cold and Arid Regions》 CSCD 2014年第6期597-606,共10页 寒旱区科学(英文版)
基金 funded by the Emphasis Opening Laboratory of Atmospheric Sounding, China Meteorological Administration the State Key Laboratory of Disaster Weather, Chinese Academy of Meteoro-logical Science (2007Y004)
关键词 TYPHOON negative elevation angle scanning strategy detecting capability typhoon negative elevation angle scanning strategy detecting capability
  • 相关文献

参考文献7

二级参考文献85

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部