摘要
研究了BL代数的区间值(∈,∈∨q)-模糊滤子理论。在BL代数中引入区间值(∈,∈∨q)-模糊对合滤子和区间值(∈,∈∨q)-模糊结合滤子两类新概念,获得了它们的几个等价刻画。详细讨论了BL代数中各类区间值(∈,∈∨q)-模糊滤子间的关系,证明了一个区间值模糊集为区间值(∈,∈∨q)-模糊布尔(关联)滤子当且仅当它既是区间值(∈,∈∨q)-模糊正关联滤子又是区间值(∈,∈∨q)-模糊对合滤子的结论。
The theory of interval valued( ∈,∈∨ q)-fuzzy filters in BL-algebras is studied systematically. Firstly,two notions of interval valued( ∈,∈∨ q)-fuzzy involution filters and interval valued( ∈,∈∨ q)-fuzzy associative filters are introduced and some characterizations of them are obtained. Secondly,the relations among all kinds of interval valued( ∈,∈∨ q)-fuzzy filters are discussed. It is proved that an interval valued fuzzy set is an interval valued( ∈,∈∨ q)-fuzzy Boolean( implicative) filter if and only if it is both an interval valued( ∈,∈∨ q)-fuzzy positive implicative and an interval valued( ∈,∈∨ q)-fuzzy involution filter.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2014年第10期83-89,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(10371106
60774073)