摘要
研究了复数域上导代数维数等于1的2-维和3-维李代数的Rota-Baxter算子的结构.给出了导代数维数等于1的2-维和3-维李代数的权为0的Rota-Baxter算子的具体表达式.并通过Rota-Baxter算子的可逆性讨论了李代数的幂零性.
The Rota-Baxter operators have wide applications in mathematical physics.In this paper,we investigate the structure of Rota-Baxter operators on the two and three dimensional Lie algebras whose derived algebras are one dimensional.We give an explicit expression of every Rota-Baxter operator which has the weight zero,and also discuss the nilpotent property of Lie algebras by means of the reversibility of Rota-Baxter operators.
出处
《河北师范大学学报(自然科学版)》
CAS
北大核心
2014年第6期541-544,共4页
Journal of Hebei Normal University:Natural Science
基金
河北省自然科学基金(A2007000138)