期刊文献+

具有Holling-Tanner项反应扩散模型的渐近性行为

Asymptotic Behavior for a Class of Reaction-diffusion Model with Holling-Tanner Term
下载PDF
导出
摘要 研究了一类在Neumman边界条件下具有扩散的Holling-Tanner模型.首先,利用比较原理得到了模型一致持续生存的充分条件.其次,通过构造迭代函数,利用上下解方法,得到模型正常数解的全局渐近稳定性. In this paper,we consider a Holling-Tanne rsystem with diffusion under homogeneous Neumman boundary condition.First,we establish a sufficient condition for the uniform persistence by using comparison principle.Second,through constructing iterative function,we get the globally asymptotical stability by using the upper and lower solutions.
作者 李瑞 李艳玲
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2014年第6期554-559,共6页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(11271236)
关键词 HOLLING-TANNER 一致持续生存 全局渐近稳定性 比较原理 Holling-Tanner uniform persistence globally asymptotical stability comparison principle
  • 相关文献

参考文献13

  • 1HASSELL M P.The Dynamies of Arthropod Predator-prey Systems[M].Nanjing:Nanjing University Press,1978.
  • 2TANNER J T.The Stability and the Intrinsic Growth Rates of Prey and Predator Populations[J].Ecology,1975,56(11):855-867.
  • 3谢强军,张花荣,周泽魁.具有Holling-Tanner项反应扩散模型正平衡解的存在性[J].工程数学学报,2007,24(4):650-654. 被引量:1
  • 4HSU S B,HUANG T W.Global Stability for a Class of Predator-prey Systems[J].SIAM J Appl Math,1955,55(2):763-783.
  • 5WONLYUL K,KIMUN R.Non-constant Positive Steady-states of a Diffusive Predator-prey System in Homogeneous Environment[J].J Math Anal Appl,2006,327(6):539-549.
  • 6YANG W.Global Asymptotical Stability and Persistent Property for a Diffusive Predator-prey System with Modified Leslie-Gower Functional Response[J].Nonlinear Anal Real World Appl,2013,14(3):1323-1330.
  • 7LIU Panping,XUE Yong.Spatiotemporal Dynamics of a Predator-prey Model[J].Nonlinear Dyn,2012,69:71-77.
  • 8BALLYK M,DUNG L,JONES D A,et al.Effects of Random Motility on Microbial Growth and Competition in a Flow Reactor[J].SIAM J Appl Math,1999,59(2):573-596.
  • 9PAO C V.On Nonlinear Reaction-diffusion Systems[J].J Math Anal Appl,1982,87(1):165-198.
  • 10FREEDMAN H J,WALTMAN P.Persistence in Models of Three Interacting Prey-predator Populations[J].Math Biosci,1984,68(2):213-231.

二级参考文献16

  • 1YI Fengqi,WEl J unjie,SHI J unping. Bifurcation and Spatiotemporal Patterns in a Homogenous Diffusive Predator-prey System [J]. Journal of Differential Equations,2009,246(5) : 1944-1977.
  • 2PENG Rui,SHI Junping. Non-existence of Non-constant Positive Steady States of Two Holling Type-Ⅱ Predator-prey Systems: Strong Interaction Case [J ]. Journal of Differential Equations, 2009,247 (3) : 866-886.
  • 3HUANG Yunjin, CHEN Fengde, ZHONG Li. Stability Analysis of a Prey-predator Model with Holling Type Ⅲ Response Func- tion Incorporating a Prey Refuge [J]. Applied Mathematics and Computation,2006,182(1 ):672-683.
  • 4FAN Yonghong, WANG Linlin. Multiplicity of Periodic Solutions for a Delayed Ratio-dependent Predator-prey Model with Holling Type Ⅲ Functional Response and Harvesting Terms [J]. Journal of Mathematical Analysis and Applications,2010,365(2):525-540.
  • 5LIAN Fuyun, XU Yuantong. Hopf Bifurcation Analysis of a Predator-prey System with HoUing Type Ⅳ:Functional Response and Time Delay [J] .Applied Mathematics and Computation,2009,215(4) : 1484-1495.
  • 6PENG Rui, WANG Mingxin, YANG Guoying. Stationary Patterns of the Holling-Tanner Prey-predator Model with Diffusion and Cross-diffusion [ J ]. Applied Mathematics and Computation, 2008,196 (2) : 570-577.
  • 7PENG Rui, WANG Mingxin. Positive Steady-states of the Holling-Tanner Prey-predator Model with Diffusion [J]. Proceedings of the Royal Society of Edinburgh,Section A,2005,135( 1 ) : 149-164.
  • 8LIU Qikuan, ZHANG Zhaoqiang, CHEN Chong. Qualitative Analysis of a Predator-prey Model with Funetional Response [ J ]. Journal of Chongqing University of Technology,2010,24(1):118-122.
  • 9SMOLLER J. Shock Waves and Reaction-diffusion Equations [ M]. Berlin: Springer, 1983.
  • 10WU Jianhua. Global Bifurcation of Coexistence State for the Competion Model in the Chemostat [J ]. Nonlinear Analysis, 2000,39(7) :817-835.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部