期刊文献+

基于动态阈值的MVN连续语音特征调整算法

Continuous Speech Feature Adjustment Algorithm Based on Dynamic Threshold MVN
下载PDF
导出
摘要 针对非特定人大词汇量连续语音识别,在均值方差归一化的基础上,提出了基于动态阈值的特征调整方法。动态阈值的选取方式包含阈值的动态范围确定和确定阈值的系数。动态阈值范围的确定依据如下两个数值,一个是样本特征点的均值,另一个是使得样本特征点等分的数值。然后再根据对特征点在样本特征点均值上下的比例关系得到系数,最后根据这个系数来确定一个具体的阈值,并基于此阈值对连续语音特征曲线进行调整。 The article focuses on the Speaker independent large vocabulary continuous speech recognition. On the funda-mental of MVN,the proposed speech feature adjustment method based on dynamic threshold. The selection of dynamic threshold includes how to find the range and the coefficient of dynamic threshold. Get the range of dynamic threshold is from the mean of feature vectors and the value, which separates the feature, vectors by an equal division method. Then, we can get the coefficient according to the proportion relationship around the mean of feature vectors. Finally, we compute the threshold by using the coefficient and use the threshold to adjust the continuous speech feature trajectory.
出处 《长春理工大学学报(自然科学版)》 2014年第5期130-133,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 连续语音识别 语音特征 算法 MVN continuous speech recognition speech feature MVN,arithmetic
  • 相关文献

参考文献5

二级参考文献50

  • 1单康,荆仁杰,姚庆栋.Fourier描绘子和人工神经网络应用于大样本集分类[J].电路与系统学报,1996,1(2):32-38. 被引量:1
  • 2杜利民,侯自强.汉语语音识别研究面临的一些科学问题[J].电子学报,1995,23(10):110-116. 被引量:21
  • 3Y.F.Gong.Speech recognition in noisy environments:A survey[J].Speech Communication,1995,16:261-291.
  • 4S.Boll.Suppression of acoustic noise in speech using spectral subtraction[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1979,27(2):113-120.In:Proceedings of IEEE International Conference on Acoustics,Acoustics and Signal Processing.
  • 5K.Paliwal and A.Basu.A speech enhancement method based on Kalman filtering[C]//Proceedings of 1987 IEEE International Conference on Acoustics,Acoustics and Signal Processing.Dallas,Texas,USA,1987:177-180.
  • 6Y.Ephraim and H.L.Van Trees.A signal subspace approach for speech enhancement[C]//Proceedings of 1993 IEEE International Conference on Acoustics,Acoustics and Signal Processing.Minneapolis,MN,USA,1993:355-358.
  • 7H.Lev-Ari,Y.Ephraim.Extension of the signal subspace speech enhancement approach to colored noise[J].IEEE Signal Processing Letters,2003,10(4):104-106.
  • 8S.Furui.Cepstral analysis technique for automatic speaker verification[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1981,29(2):254-272.
  • 9O.Viikki and K.Laurila.Cepstral Domain Segmental Feature Vector Normalization for Noise Robust Speech Recognition[J].Speech Communication,1998,25:133-147.
  • 10A.de la Torre,A.M.Peinado,J.C.Segura et al.Histogram equalization of speech representation for robust speech recognition[J].IEEE Transactions on Acoustics,Speech and Signal Processing,2005,13(3):355-366.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部