摘要
人工蜂群算法是近年来提出的一种受生物行为启发的优化算法,该算法主要通过模拟蜜蜂的觅食来实现问题的求解。作为一种全局优化算法,人工蜂群算法有着较好的探寻能力,但其探索能力相对较弱。针对人工蜂群算法收敛速度缓慢的问题,提出基于scout蜂交叉觅食的改进人工蜂群算法。该算法通过交叉策略来指导scout蜂的觅食行为,避免了随机觅食带来的算法收敛速度缓慢的问题,提高算法的收敛速度。通过五个基准测试函数进行对比实验,结果表明新算法无论是在收敛速度、解的质量方面都优于标准人工蜂群算法,是一种有效的优化算法。
Artificial bee colony (ABC) algorithm invented recently is a biological-inspired optimization algorithm, which simulates the foraging behaviors of honey bee swarm. As one of the global optimization algorithms, ABC is good at exploration but poor at exploitation. A modified artificial bee colony (MABC) algorithm based on crossover strategy of scout is proposed for slow convergence of basic ABC. MABC avoids the problem of slow convergence came with ran-dom foraging and increases the convergence speed by means of crossover strategy which guides the scout foraging be-havior. The proposed algorithm is tested on five different scale problems and compared with basic ABC. The compari-son results show that MABC is an effective algorithm, and is better than basic ABC in not only the convergence speed but also the solution quality.
出处
《长春理工大学学报(自然科学版)》
2014年第5期137-140,145,共5页
Journal of Changchun University of Science and Technology(Natural Science Edition)
基金
吉林省科技发展计划
吉林省公共计算平台资助(20130101179JC-11)
吉林省自然科学基金(20130101054JC)
关键词
人工智能
全局优化
人工蜂群算法
交叉策略
artificial intelligence
global optimization
artificial bee colony
crossover strategy