期刊文献+

基于混合卡尔曼滤波的组合导航算法研究 被引量:1

Research on Integrated navigation algorithm based on hybrid kalman filter
原文传递
导出
摘要 建立了精确制导炸弹MINS/GPS组合导航数学模型。针对扩展卡尔曼滤波存在的问题,研究了非线性滤波,提出了一种新的滤波算法——混合卡尔曼粒子滤波,并应用于组合导航系统定位。仿真结果表明:混合卡尔曼粒子滤波能有效提高组合导航系统的精度和可靠性。 to establish the mathematical model precision bombs MINS/GPS integrated navigation.Aiming at the existing problem of extended kalman filter, the nonlinear filtering, this paper proposes a new filtering algorithm -- mixed kalman particle filter, and applied to the integrated navigation system positioning.The simulation results show that the hybrid kalman particle filter can effectively improve the accuracy and reliability of integrated navigation system.
作者 戴革林 李珺
出处 《网络安全技术与应用》 2014年第10期60-60,63,共2页 Network Security Technology & Application
关键词 组合导航 制导炸弹 卡尔曼滤波 integrated navigation Guided bomb Kalman filter
  • 相关文献

参考文献8

  • 1Grewal M S, Henderson V D, Miyasako R S.Application of Kalman Filtering to theCalibration and Alignment of Inertial Navigation Systems[J].IEEE Trans.on Automatic Control, 1991, 36 (1) : 4-13.
  • 2Julier S J.A new method for the nonlinear transformation of means and covariance in filters and estimators[J].IEEE Trans on Automatic Control, 2000, 45:477~482.
  • 3王中训,管旭军,王德法.非线性滤波算法在无源定位中的应用[J].烟台大学学报(自然科学与工程版),2007,20(1):35-39. 被引量:3
  • 4Julier s J, Uhlmann J K, Durrant-Whyte H F.A new approach for filtering nonlinear systems [A].In Proc.of the American Control Conference[C], Seattle, Washington, 1995: 1628-1632.
  • 5Julier S.J., Uhlmann J.K..Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE, 2004, 92 ( 3 ) : 401~422.
  • 6Hao Y, Xiong Z, Wang W, Sun F.Rapid transfer alignment based on unscented KalmanFilter[A].In Proc.of the 2006 American ControlConference[C], Minneapolis, USA.2006: 2215-2220.
  • 7Zhan.R, J.W.Neural network-aided adaptive Unscented Kalman filter for nonlinear state Estimation[J].Signal Processing Letters, IEEE, 2006, 13 (7) : 445-448.
  • 8Xiong Z, Hao Y, Sun F.SINS rapid in-motion alignment based on nonlinear filter[A].Position Location and Navigation Symposium[C], 2006 IEEE/ION: 86-93.

二级参考文献6

  • 1Weiss H, Moore J B. Improved extended kalman filter design for passive tracking [J]. IEEE Trans Automat Contr,1980,30:807-811.
  • 2Peggy J G, Mohammed A I. An alternative derivation of the modified gain function of song and speyer [J]. IEEE Transactions on Automatic Control, 1991,36: 1323-1326.
  • 3Julier S J. A new method for the nonlinear transformation of means and covariances in filters and estimators [J].IEEE Tnms on Automatic Control, 2000,45: 477-482.
  • 4Dan C, Arnaud D. A survey of convergence results on partical filtering methods for practitioners [J]. IEEE Transactions on Signal Processing, 2002,140:736-746.
  • 5Gordon N, Salmond D, Smith A F M, Novel approach to nonlinear and non-Gaussian Bayesian state estimation [J].Proc Inst Elect Eng, 1993,140: 107-133.
  • 6高磊,徐德民,崔海英,谢琳.混合坐标下的卡尔曼滤波应用于水下被动目标跟踪[J].西北工业大学学报,2001,19(2):254-257. 被引量:6

共引文献2

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部