期刊文献+

基于聚类分类法的信息过滤技术研究 被引量:4

Research of the information filter based on clustering launched classification
下载PDF
导出
摘要 为了提高信息过滤的效率,提出了一种基于聚类分类的信息过滤技术,并进行了研究,详细论述了实现的过程以及关键技术。通过实验表明,该方法较适合处理具不确定性的资料,是实现信息过滤的实用工具。 In order to improve the efficiency of information filter, the method based on clustering launched classification was designed and research, the process and key technology was discussed in details. Experiments show that the method is insensitive to parameter, It is a practical tool that realizing the information filter.
出处 《电子设计工程》 2014年第20期14-16,19,共4页 Electronic Design Engineering
基金 辽宁省教育科学‘十二五’规划立项课题(JG12DB279 JG13DB077)
关键词 聚类分类法 信息过滤 文本分类 K-MEANS算法 clustering launched classification information filter text classification K-means algorithm
  • 相关文献

参考文献5

  • 1Begg R K,Palaniswami M,Owen B, Support Vector Machines for Automated Gait Classification [C]//IEEE Transactions on Biomedical Engineering, 2005: 828-835.
  • 2Kim D S,Nguyen H,Park J S.Genetic Algorithm to Improve. SVM Based Network Intrusion Detection System[C]//. Proc of the 19th International Conference on Advanced Information Networking and Applications, 2005: 155-158.
  • 3Hammamii M,Chahir Y, Chen L.Web guard:A web filtering engine combining textual,structural,and visual content based analysis [J].IEEE Transactions on Knowledge and Data Engineering,2006,8 (2):272-284.
  • 4Chen T S,Lin C C,Chiu Y H,et al .A NewBinary Classifier:. Clustering Launched Classification [C]//.Proc of International Conference on Lecture Notes in Artificial Intelligence,2005: 278-283.
  • 5中国互联网违法和不良信息举报情况公告[EB/OL].2012.http://net.china.tom.cn/jbqk/node__5957.htm.

共引文献1

同被引文献34

  • 1田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33
  • 2Wei J,Rovira-Mas F,Reid J F. Obstacle detection using stereo vision to enhance safety of autonomous machines[J]. Transactions of the ASAE,2005,48(6):2389-2397.
  • 3Huang Z. Extensions to the K-means algorithm for clustering large data sets with categorical value[J]. Data Ming and Knowledge Discovery,1998,2(3):283-304.
  • 4Rajab M I,Woolfson M S,Morgan S P. Application of region based segmentation and neural network edge detection to skin lesions[J]. Computerized Medical Imaging and Graphics,2004,28(12):61-68.
  • 5Rafael C.Gonzalez, Richard E.Woods. 数字图像处理[M]. 2版.阮秋琦,阮宇智,译.北京:电子工业出版社,2011.
  • 6Foedler M. Algebraic connectivity of graphys[J]. Czech Math, 1973 (23):2982305.
  • 7Wu Z, Leahy R. An optimal grapy theoretic approach to data clustering: theory and its application to image segmentation [J]. IEEE Trans on PAMI, 1993,15(11):1101-1113.
  • 8Shi J, Malik J. Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8):888-905.
  • 9Hagen L, Kahng A B. New spectral methods for radio cut partition and clustering [J]. IEEE Trans. Computer-Aided Design, 1992,11(9):1074-1085.
  • 10Sarkar S, Soundararajan P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22 (5) :504-525.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部