期刊文献+

基于动态云—量子神经网络群的配电网实时故障定位方法 被引量:1

Real-time fault location method of distribution network based on dynamic cloud and quantum neural network group
下载PDF
导出
摘要 针对传统的配电网故障定位方法在配电网故障信号微弱时存在的故障数据交叉现象严重、实时性较差等问题,提出了一种基于动态云-量子神经网络群的配电网实时故障定位方法;构建了用于配电网故障定位的动态云-量子神经网络群结构模型,提出一种动态云-量子神经网络群改进算法,并给出了基于该算法的配电网实时故障定位步骤;在Matlab软件中采用该方法对某10kV配电网进行故障定位仿真研究,结果表明该方法能够实时、有效地实现故障信号微弱情况下的配电网故障定位,测试精度为97.39%,训练时间为0.001 6s。 For resolving problems of serious fault data crossover phenomenon and poor real-time performance of traditional fault location methods of distribution network under the condition of weak fault signal,a real-time fault location method of distribution network based on dynamic cloud and quantum neural network group was proposed.A structure model of dynamic cloud and quantum neural network group was established for fault location of distribution network.An improved algorithm of dynamic cloud and quantum neural network group was proposed and real-time fault location steps based on the improved algorithm for distribution network were given.The method was simulated for fault location of a 10 kV distribution network with test accuracy of 97.39%and training time of 0.001 6s.The results show that the method realizes fault location of distribution network under the condition of weak fault signal realtimely and effectively.
出处 《工矿自动化》 北大核心 2014年第11期71-75,共5页 Journal Of Mine Automation
基金 河北省自然科学基金钢铁联合基金资助项目(F2012209015) 河北联合大学轻工学院科学研究基金项目(qy20120012)
关键词 配电网 故障定位 微弱故障信号 动态云QNN群 云理论 量子神经网络 distribution network fault location weak fault signal dynamic cloud and quantum neural network group cloud theory quantum neural network
  • 相关文献

参考文献16

二级参考文献180

共引文献584

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部