期刊文献+

对角占优矩阵奇异-非奇异的充分必要判据

Necessary and sufficient criterion for singularity or non-singularity of diagonally dominant matrices
原文传递
导出
摘要 本文研究对角占优矩阵奇异-非奇异的充分必要条件.基于Taussky定理,本文得出,可约对角占优矩阵的奇异性由其独立Frobenius块的奇异性决定,从而将这一问题化为不可约对角占优矩阵的奇异-非奇异性问题;运用Taussky定理研究奇异不可约对角占优矩阵的相似性和酉相似性,获得这类矩阵元素辐角间的关系;并与Taussky定理给出的这类矩阵元素模之间的关系结合在一起,研究不可约对角占优矩阵奇异的充分必要条件;最后给出不可约对角占优矩阵奇异-非奇异性的判定方法. The necessary and sufficient conditions that a diagonally dominant matrix is singular or nonsingular are examined in this article. According to Taussky Theorem we find that the singularity of a reducible diagonally dominant matrix is determined by the singularity of its independent Frobenius blocks. Thus, whether a reducible diagonally dominant matrix is singular or not can be transformed into the problem of whether its Frobenius blocks, which are irreducible diagonally dominant matrices, are singular or nonsingular. According to Taussky Theorem we study the similarity and unitary similarity of the singular irreducible diagonally dominant matrices. Furthermore we obtain some relationship of arguments between the elements of this type of matrices. Incorporated with an existing relationship of modulus between the elements of this type of matrices given by Taussky, we study the necessary and sufficient conditions for singularity of this type of matrices. Finally we give the criteria for the singularity or non-singularity of the irreducible diagonally dominant matrices.
作者 金继东
出处 《中国科学:数学》 CSCD 北大核心 2014年第11期1165-1184,共20页 Scientia Sinica:Mathematica
关键词 对角占优矩阵 奇异 非奇异 可约 不可约 Frobenius标准型 酉相似性 diagonally dominant matrix, singular, nonsingular, reducible, irreducible, Frobenius canonicalform, unitary similarity
  • 相关文献

参考文献8

二级参考文献38

  • 1黄廷祝.非奇H矩阵的简捷判据[J].计算数学,1993,15(3):318-328. 被引量:198
  • 2游兆永,李磊.共轭广义对角占优矩阵的特征值分布[J].Journal of Mathematical Research and Exposition,1989,9(2):309-310. 被引量:26
  • 3李宗刚,贾英民.一类具有群体LEADER的多智能体系统的聚集行为[J].智能系统学报,2006,1(2):26-30. 被引量:6
  • 4俞辉,王永骥,刘磊.基于动态拓扑有领航者的智能群体群集运动控制[J].系统工程与电子技术,2006,28(11):1721-1724. 被引量:14
  • 5Vicsek T, Czirok A, Ben Jaob E, et al. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 1995, 75(6): 1226 -1229.
  • 6Jadbabate A, Lin J, Mose A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988 -1001.
  • 7Tanner H G, Jadbabate A, Pappas G J. Stable flocking of mobile agents, Part II: Dynamic topology. Proceedings of the 42nd IEEE Conference on Decision and Control, Maul, Hawaii, USA, 2003: 2016-2021.
  • 8Fax A, Murray R. Information flow and cooperative control of vehicle formations. IEEE Transac- tions on Automatic Control, 2004, 49(9): 1465-1476.
  • 9Saber R O, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactionson Automatic Control, 2004, 49(9): 1520 -1533.
  • 10Lin Zhiyun, Francis Bruce. Manfredi maggiore, necessary and sufficient graphical conditions for formation control of unicycles. IEEE Transactions on Automatic Control, 2005, 50(1): 121-126.

共引文献307

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部