期刊文献+

器件参量对栅极调制碳纳米管冷阴极的影响(英文)

The Effects of Parameters for the Field Emission from Gated Carbon Nanotube Cold Cathode
下载PDF
导出
摘要 基于电场叠加原理,利用悬浮球模型给出了带栅极纳米管顶端电场与电场增强因子,分析了碳纳米管与衬底之间的接触电阻、器件几何参量以及阴栅极之间的电介质对器件场发射性能的影响.结果表明:接触电阻大大降低了碳纳米管阴极的场发射电流,当接触电阻超过100kΩ时,发射电流密度非常小,此时需要更高的阳极开启电压;当阴栅极之间的电介质为真空时,阴极电子发射性能最佳;除了碳纳米管的长径比之外,栅孔半径、阴栅极间距以及阳极距离等的优化设计,也能提高器件发射性能;通过栅极偏压的调制,可以降低阳极驱动电压. The model of floated sphere in the triode configuration was proposed and the actual electric field and the field enhancement factor at the top of carbon nanotube were calculated analytically by superposition principle of electric field.The effects of the contact resistance,the geometrical parameters of device,and the dielectric of between the gate and cathode were computed.The calculation results show that the emission current from carbon nanotube is greatly reduced by the contact resistance.When the contact resistance is larger than 100kΩ,the emission current from carbon nanotube tends to be zero.The field enhancement factor was at a maximum value under the condition of the vacuum.The gate-hole radius,the gate-cathode distance,and the gate-anode distance greatly affect the field emission properties of the device.The field emission properties improved via optimizing the parameters above mentioned and modulating the gate voltage.
出处 《光子学报》 EI CAS CSCD 北大核心 2014年第10期46-53,共8页 Acta Photonica Sinica
基金 The National Natural Science Foundation of China(No.61261004)
关键词 碳纳米管 冷阴极 悬浮球 场发射 接触电阻 电介质 Carbon nanotube Cold cathode Floated sphere Field emission Contact resistance Dielectric
  • 相关文献

参考文献20

  • 1MILNE W I, TEO K B K, CHHOWALLA M, etal. Electron emission from arrays of carbon nanotubes/fibres[J]. Current Applied Physics, 2002, 2(6): 509-513.
  • 2PIRIO G, LEGAGNEUX P, PRIBAT D, et al. Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode [ J ]. Nanotechnology, 2002, 13(1) : 1-4.
  • 3MINH P N, TUYEN L T T, ONO T, etal. Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters[J]. Journal of Vacuum Science & Technology B, 2003, 21(4) : 1705-1709.
  • 4CHOIJ H, CHOI S H, HAN J H, etal. Enhanced electron emission from carbon nanotubes through density control using in situ plasma of catalyst metal [J]. Journal of Apptted Physics, 2003, 94(1): 487-490.
  • 5CHEN Qi-dao and DAI Li-ming. Three-dimensional micropatterns of well-aligned carbon nanotubes produced by photolithography [ J ]. Journal of Nanoscience and Nanotechnology , 2001, 1 (1) : 43-47.
  • 6LEE Y H, JANG Y T, KIM D H, etal. Realization of gated field emitters for electrophotonic applications using carbon nanotube line emitters directly grown into submierometer holes [J]. Advanced Materials, 2001, 13(7) : 479-482.
  • 7TEO K B K, CHHOWALLA M, AMARATUNGA G A, et al. Field emission from dense, sparse, and patterned arrays of carbon[J]. Applied Physics Letters, 2002, 80 (11) : 2011- 2013.
  • 8HSU D S Y. Microgating carbon nanotube field emitters by in- situ growth inside open aperture arrays[J]. Applied Physics Letters, 2002, 80(16): 2988-2992.
  • 9HSU D S Y, SHAW J. Integrally gated carbon nanotube-on- post field emitter arrays[J]. Applied Physics Letters, 2002, 80(1) . 118-121.
  • 10PARK K H, SEO W J, LEE S, et al. Triode field emitter with a gated planar carbon-nanopartiele cathode[J]. Applied Physics Letters, 2002, 81(2): 358-360.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部