期刊文献+

一类超混沌系统的动力学研究及其仿真

Dynamical analysis of hyper-chaotic system and its simulation
下载PDF
导出
摘要 混沌系统的全局:憎数吸引集在混沌系统的控制与同步之中起着非常重要的作用。借助一个适当的Lyapunov函数和一元函数极值理论研究了一个新超混沌系统的全局指数吸引集,得到了该系统的全局指数吸引集表达式Q。可以断定在全局指数吸引集Q之外混沌系统的平衡位置、周期解、概周期解、游荡回复解和其他任何混沌吸引子都不复存在,这大大简化了对该系统的分析工作。确定轨线从吸引集外走向吸引集的速度是指数速率。同时得到的全局指数吸引集表远式Q为该系统的控制和同步提供了理论依据。通过计算机进行了模拟,数值模拟与理论计算的结果相吻合。 Globally expommtially attractive set of a chaotic system plays an important role in chaos control and chaos syn- chronization. In this paper, the globally exponentially attractive set of a new hyper-chaotic system is studied via constructing a Lyapunov function and tiae function extreme value theory. It has been obtained that the globally exponentially attractive set D for this system. It can be concluded that the system cannot have equilibrium points, periodic solutions, quasiperiodic solutions, or other chaotic attractors outside the globally attractive set t2. This simplifies the analysis of the properties of the hyper-chaotic system. Furthermore, it can be concluded that the rate of the ffajectories of system going from the exterior of the set O to the interior of the set 1"2 is an exponential rate. The globally exponentially attractive set ~ also provides the theoretic foundation for the chaotic control and chaotic synchronization of the system. Numerical simulations are pre- sented to show the effectiveness of the proposed scheme. Numerical simulation is consistent with the results of theoretical calculation.
出处 《计算机工程与应用》 CSCD 2014年第22期79-82,共4页 Computer Engineering and Applications
基金 重庆市自然科学基金(No.2009BB3185).
关键词 超混沌系统 全局指数吸引集 数值仿真 李雅普诺夫函数 hyper-chaotic system globally exponentially attractive set numerical simulations Lyapunov function
  • 相关文献

参考文献15

  • 1Lorenz E N.Deterministic non-periods flows[J].J Atmos Sci, 1963,20: 130-141.
  • 2Stwart I.The Lorenz attractor exists[J].Nature, 2002, 406 948-949.
  • 3LIAO Xiaoxin 1, 2, 3 , FU Yuli 4 & XIE Shengli 4 1. Department of Control Science & Control Engineering, Huazhong University of Science & Technology, Wuhan 430074, China,2. School of Automation, Wuhan University of Science & Technology, Wuhan 430070, China,3. School of Information, Central South University of Economy, Politics and Law, Wuhan 430064, China,4. School of Electronics & Information Engineering, South China University of Technology, Guangzhou 510640, China Correspondence should be addressed to Liao Xiaoxin (email: xiaoxin_liao@hotmail.com).On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization[J].Science in China(Series F),2005,48(3):304-321. 被引量:23
  • 4Liao Xiaoxin,Yu Pei.Study on the global property of the smooth Chua's system[J].Internat J Bifur Chaos Appl Sei Engrg,2006, 16:2815-2841.
  • 5Li Damei,Lu Junan,Wu Xiaoqun.Estimating the ultimate bound and positively invariant set for the hyperchaotie Lorenz-Haken system[J].Chaos Solitons Fractals, 2009, 39: 1290-1296.
  • 6Wang Pei,Li Damei,Hu Qianli.Bounds of the hyper-eha- otic Lorenz-Stenflo system[J].Commun Nonlinear Sci Numer Simul,2010, 15(9) :2514-2520.
  • 7Wang Pei, Li Damei, Wu Xiaoqun, et al.Ultimate bound estimation of a class of high dimensional quadratics au- tonomous dynamical systems[J].Internat J Bifur Chaos Appl Sci Engrg, 2011,21 (9) : 2679-2694.
  • 8Zhang Fuchen, Shu Yonglu,Yang Hongliang.Bounds for a new chaotic system and its application in chaos synchroni- zation[J].Commun Nonlinear Sci Numer Simul, 2011,16 (3) : 1501-1508.
  • 9Zhang Fuchen, Mu Chunlai, Li Xiaowu.On the boundness of some solutions of the Lii system[J].Internat J Bifur Chaos Appl Sci Engrg, 2012,22( 1 ) : 1250015-1-1250015-5.
  • 10Zhang Fuchen, Shu Yonglu, Yang Hongliang, et al.Esti- mating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization[J].Chaos Solitons Fractals, 2011, (44) : 137-144.

二级参考文献32

  • 1LIAO Xiaoxin 1, 2, 3 , FU Yuli 4 & XIE Shengli 4 1. Department of Control Science & Control Engineering, Huazhong University of Science & Technology, Wuhan 430074, China,2. School of Automation, Wuhan University of Science & Technology, Wuhan 430070, China,3. School of Information, Central South University of Economy, Politics and Law, Wuhan 430064, China,4. School of Electronics & Information Engineering, South China University of Technology, Guangzhou 510640, China Correspondence should be addressed to Liao Xiaoxin (email: xiaoxin_liao@hotmail.com).On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization[J].Science in China(Series F),2005,48(3):304-321. 被引量:23
  • 2廖晓昕,罗海庚,傅予力,谢胜利,郁培.论Lorenz系统族的全局指数吸引集和正向不变集[J].中国科学(E辑),2007,37(6):757-769. 被引量:25
  • 3LI Damei, LU Junan, WU Xiaoqun, et al. Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system[J]. Journal of Mathematical Analysis and Applications, 2006, 323 (2) :844-853.
  • 4QIN Wenxin, CHEN Guanrong. On the boundedness of solutions of the Chen system[J]. Journal of Mathematical Analysis and Applications, 2007, 329 (1):445-451.
  • 5ANTONIN VANEEK, CELIKOVSKY SERGEJ. Control systems: from linear analysis to synthesis of chaos[M]. London: Prentice-Hall, 1996.
  • 6LU J, CHEN G. A new chaotic attractor coined [J]. Intemational Journal of Bifurcation and Chaos, 2002, 12 (3) :659-661.
  • 7LIAO X. On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization[ J]. Sci China Ser E, 2004,34:1404-1419.
  • 8POGROMSKY A YU, SANTOBONI G, NIJMELIER H. An ultimate bound on the trajectories of the Lorenz systems and its applications[ J]. Nonlinearity, 2003, 16 : 1597-1605.
  • 9VLADIMIR A BOICHENKO, GENNADII ALEKSEEVICH LEONOV, VOLKER REITMANN. Dimension theory for ordina- ry differential equations [ M ]. Wiesbaden: Teubner Verlag, 2005.
  • 10SWINNERTON-DYER PETER. Bounds for trajectories of the Lorenz equation : an illustration of how to choose Liapunov functions[J]. Physics Letters A, 2001,281 (2-3) :161-167.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部