期刊文献+

一类含临界指标的双调和方程解的存在性

下载PDF
导出
摘要 本文研究以下具有Navier边界,含临界指标的双调和方程解的存在性:{Δ2u=λ|u|q-2u+μ|u|2,-2u,x∈Ωu=Δu=0,x∈Ω}其中Ω为RN中一个包含原点的具有光滑边界的有界区域,N≥5;1<q<2;λ,μ>0;2*=2N/N-4为Sobolev临界指数。通过在Nehari流形上抽取PS序列,得到方程非平凡解的存在性。 In this paper,we are concerned with the following problem:{u=△u=0,x∈σΩ △^2u=λ|u|^q-2 u+μ|u|^2*-2u,x∈Ω Where Ω is a bounded domain containing the origin in RN with ,N ≥5;αΩis sufficiently smooth. 1 〈q 〈2;λ,μ〉0;2= 2N/N-4 is the critical Sobolev exponent.By extracting the PalaisSmale sequence in the Nehari manifold ,the existence of nontrivial solution to this equation is verified.
出处 《科技视界》 2014年第32期204-205,212,共3页 Science & Technology Vision
关键词 双调和方程 临界指标 变分方法 NEHARI流形 解的存在性 Biharmonic equation Critical exponent Variational method Nehari manifold Existence of solution
  • 相关文献

参考文献5

  • 1H.Brezis,Nirenberg.Positive solutions of nonlinear elliptic equation involving critical Sobolev exponent[J].Comm.Pure Appl.Math.,1983(36):437-477.
  • 2K.J.Brown,Yanping Zhang.The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function[J].Differential Equation,2003(193):481-499.
  • 3Stanislav I.Pohozaev.Problems via the fibering method,Handbook of differential equations-stationary partial differential equation.vol 5[M].
  • 4C.O.Alves,A.El Hamidi.Nehari manifold and existence of positive solutions to a class of quasilinear problems[J].Nonlinear Analysis,2005:60:611-624.
  • 5P.Pucci,J.Serrin.Critical exponents and critical dimensions for polyharmonic operators[J].Math.Pures et.Appl.,1990(69):55-83.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部