期刊文献+

含不凝气体蒸汽泡直接接触冷凝 被引量:13

Direct contact condensation of steam bubbles with non-condensable gas
下载PDF
导出
摘要 通过可视化实验研究了含空气蒸汽泡的冷凝行为和传热特性,气泡中蒸汽质量含量在0.5~0.8之间。在两种不同的过冷水温度下,混合气体气泡分别由直径1.5 mm和3 mm的喷嘴以不同的速度喷入静止的过冷水空间中。通过高速摄像机记录气泡冷凝过程,通过气泡体积变化状况计算气泡热力学参数,进而计算气泡的冷凝传热系数。结果表明,气泡在冷凝过程中不断变形,且在冷凝开始时,气泡出现中空现象;冷水温度越低,冷凝传热系数越低;气泡体积越大,冷凝传热系数越低;喷嘴直径对冷凝传热影响不明显;不凝气体的加入恶化了冷凝传热。对实验中65个气泡传热系数的数值进行了拟合,获得了传热系数关联式。 The condensation behavior and heat transfer characteristics of steam bubbles with air were investigated by visual experiments, with steam mass fraction between 0.5 and 0.8. Bubbles of gas mixture were injected into cool water at two different temperatures through nozzles of diameter 1.5 and 3 mm. The condensing processes of bubbles were recorded by high speed camera and the thermodynamic parameters of bubbles were obtained by the variation of bubble volumes, from which the condensing heat transfer coefficients were calculated. The results show that the bubble deforms continuously when it condenses and a hollow forms in the middle of the bubble at the beginning of the condensing process. The condensing heat transfer coefficient decreases as cool water temperature decreases and bubble volume increases, while it is not affected by the nozzle diameter. The condensing heat transfer is deteriorated by the noncondensing gas. A correlation to predict the heat transfer coefficients is established using all the 65 data obtained in this experiment.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第12期4749-4754,共6页 CIESC Journal
基金 山东省科技攻关项目(2008GG10007009) 山东科技发展计划项目(2012GGX10421)~~
关键词 气泡冷凝 不凝气体 传热系数 可视化实验 bubble condensing non-condensable gas heat transfer coefficient visual experiment
  • 相关文献

参考文献16

  • 1王四芳,兰忠,王爱丽,马学虎.超疏水表面蒸汽及含不凝气蒸汽滴状冷凝传热实验分析[J].化工学报,2010,61(3):607-611. 被引量:22
  • 2周兴东,马学虎,兰忠,宋天一.滴状冷凝强化含不凝气的蒸气冷凝传热机制[J].化工学报,2007,58(7):1619-1625. 被引量:20
  • 3Su J Q, Sun Z N, Fan G M’Ding M. Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface [J]. Nuclear Engineering and Design, 2013, 262:201-208.
  • 4Lee K Y, Kim M H. Experimental and empirical study of steam condensation heat transfer with a noncondensable gas in a small-diameter vertical tube [J]. Nuclear Engineering and Design, 2008, 238(1):207-216.
  • 5崔永章,田茂诚.内置折边扭带管内高湿气体对流凝结换热与流动特性[J].化工学报,2010,61(12):3092-3099. 被引量:6
  • 6Chantana CjKumar S. Experimental and theoretical investigation of air-steam condensation in a vertical tube at low inlet steam fractions [J]. Applied Thermal Engineering, 2013,54(2):399-412.
  • 7Li J D. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers [J]. International Journal of Heat and Mass Transfer,2013, 57(2):708-721.
  • 8Gulawani S S, Dahikar S K, Mathpati C S,Joshi J B, Shah M S, Ramaprasad C S,Shukla D S. Analysis of flow pattern and heat transfer in direct contact condensation [J]. Chemical Engineering Science, 2009, 64(8):1719-1738.
  • 9Xu Q, Guo L J, Zou S F,Chen J ,Zhang X. Experimental study on direct contact condensation of stable steam jet in water flow in a vertical pipe [J]. International Journal of Heat and Mass Transfer, 2013,66:808-817.
  • 10Wu X Z,Yan J J, Shao S F, Cao Y5Liu J P. Experimental study on the condensation of supersonic steam jet submerged in quiescent subcooled water: Steam plume shape and heat transfer [J]. International Journal of Multiphase Flow, 2007,33(12):1296-1307.

二级参考文献39

共引文献39

同被引文献108

引证文献13

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部