期刊文献+

煤和焦炉气联供制烯烃过程的建模模拟与分析 被引量:5

Modeling,simulation and analysis for co-feed process of coal and coke-oven gas to olefins
下载PDF
导出
摘要 由于煤富碳少氢,煤制烯烃过程生产1 t产品将排放约5.8 t CO2。与此同时,中国焦炭工业每年产生约7×1010 m3的副产物焦炉气,这些富氢的焦炉气大多被燃烧或直接排放进入大气,对环境造成严重影响的同时还浪费了巨大的经济价值。本文对焦炉气辅助煤制烯烃的新过程进行了建模模拟与系统分析。焦炉气与煤元素互补,焦炉气中的H2可用来调节合成气的氢碳比;CH4可通过甲烷水蒸气重整和甲烷干重整两个过程,提高合成气的氢碳比的同时降低煤制烯烃过程排放的CO2,提高碳元素利用率,实现节能减排。这个新的联供过程的能效比煤制烯烃过程提高了约10个百分点,而CO2排放量则减少了约95%。 Olefins are one of the most important platform chemicals. Developing coal-to-olefins (CTO) processes is regarded as one of promising alternatives to oil-to-olefins process. However, CTO suffers from high CO2 emission due to the high carbon contents of coal. In China, there is 7 × 10^10 m^3 coke-oven gas (COG) produced in coke plants annually. However, most of the hydrogen-rich COG is utilized as fuel or discharged directly into the air. Such situation is a waste of precious hydrogen resource and serious economic loss, which causes serious environmental pollution either. This paper proposes a novel co-feed process of coal and COG to olefins in which CH_4 of COG reacts with CO_2 in a dry methane reforming unit to reduce emissions, while the steam methane reforming unit produces H_2-rieh syngas. H_2 of COG can adjust the H/C ratio of syngas. The analysis shows that the energy efficiency of the co-feed process increases about 10 %, while at the same time, CO_2 emission is reduced by around 95 % in comparison to the conventional CTO process.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第12期4850-4856,共7页 CIESC Journal
基金 国家自然科学基金项目(21136003 21306056) 国家重点基础研究发展计划项目(2014CB744306)~~
关键词 计算机模拟 合成气 系统工程 焦炉气 甲烷干重整 甲烷水蒸气重整 烯烃 computer simulation syngas systems engineering coke-oven gas dry methane reforming steammethane reforming olefins
  • 相关文献

参考文献20

  • 1Xiang D, Qian Y, Man Y, Yang S. Techno-economic analysis of the coal-to-olefms process in comparison with the oil-to-oleflns process []]. Applied Energy, 2014,113:639-647.
  • 2National Bureau of Statistics of China. China Energy Statistics Yearbook (中国能源统计年鉴)[M]. Beijing: China Statistics Press, 2012.
  • 3项东,彭丽娟,杨思宇,钱宇.石油与煤路线制烯烃过程技术评述[J].化工进展,2013,32(5):959-970. 被引量:35
  • 4Yang S, Yang Q, Li H, Jin X,Li X, Qian Y. An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes [J]. Industrial & Engineering Chemistry Research, 2012, 51:15763-15777.
  • 5Minchener A J. Gasification based CCS challenges and opportunities for China [J]. Fuel, 2013,116:904-909.
  • 6Martinez I,Murillo R, Grasa Gf Fernandez J R, Abanades J C. Integrated combined cycle from natural gas with CO2 capture using a Ca-Cu chemical loop [J]. AIChE Journal, 2013,59:2780-2794.
  • 7Man Y, Yang S, Xiang D, Li X,Qian Y. Environmental impact and techno-economic analysis of the coal gasification process witii/without CO2 capture [J]. Journal of Cleaner Production, 2014, 71:59-66.
  • 8Adams T A, Barton P I. Combining coal gasification and natural gas reforming for efficient polygeneration [J]. Fuel Processing Technology, 2011, 92:639-655.
  • 9Salkuyeh Y K, Adams T A. Combining coal gasification, natural gas reforming, and external carbonless heat for efficient production of gasoline and diesel with CO2 capture and sequestration [J]. Energy Conversion and Management, 2013, 74:492-504.
  • 10National Development and Reform Commission of China (国家发改委).Natural Gas Utilization Policy (天然气利用政策)[OL].[2012]. http://www.gov.cn/flfg/2012-10/31/content_2254647.htm.

二级参考文献125

共引文献58

同被引文献59

  • 1欧阳福承,王振凡.焦炉荒煤气显热回收利用的研究[J].吉林化工学院学报,1993,10(3):1-8. 被引量:14
  • 2范晓雷,杨帆,张薇,周志杰,王辅臣,于遵宏.热解过程中煤焦微晶结构变化及其对煤焦气化反应活性的影响[J].燃料化学学报,2006,34(4):395-398. 被引量:41
  • 3Shen J, Wang Z H. A new technology for producing hydrogen and adjustable ratio syngas from coke oven gas [J]. Energy & Fuels, 2007, 21(6): 3588-3592.
  • 4Collot A G. Matching gasification technologies to coal properties [J]. International Journal of Coal Geology, 2006, 65(3): 191-212.
  • 5Balat M, Kirtay E, Balat H. Main routes for the thermo-conversion of biomass into fuels and chemicals(Ⅱ): Gasification systems [J]. Energy Convers Manage, 2009, 50(12): 3158-3168.
  • 6Li C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels—a review [J]. Fuel, 2013, 112: 609-623.
  • 7Zhao Z G, Zhang J W, Zhao F X, Zeng X, Liu X X, Xu G W. Destruction of caking properties of bituminous coal by jetting pre-oxidation in a fluidized bed [J]. Fuel, 2014, 133: 45-51.
  • 8Zhang J W, Zhao Z G, Zhang G Y, Zeng X, Zhao F X, Li D, Xu G W. Pilot study on jetting pre-oxidation fluidized bed gasification adapting to caking coal [J]. Applied Energy, 2013, 110: 276-284.
  • 9Zeng X, Wang Y, Yu J, Wu S S, Zhong M, Xu S P, Xu G W. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy & Fuels, 2011, 25(3): 1092-1098.
  • 10Hoeven T A, Lange H C, Steenhoven A A. Analysis of hydrogen-influence on tar removal by partial oxidation [J]. Fuel, 2006, 85(7): 1101-1110.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部