期刊文献+

基于多动态核聚类的间歇过程在线监控 被引量:4

Multiple dynamic kernel clustering based online monitoring for batch processes
下载PDF
导出
摘要 针对传统的多元统计监测方法不能有效检测工业过程中由于初始条件波动较大所引发的弱故障问题,提出一种基于多动态核聚类的核主元分析(DKCPCA)监控策略,实现多阶段间歇过程的弱故障在线监控。该方法首先针对过程中各阶段每一批次数据结合自回归移动平均时间序列模型(ARMAX)和核主成分分析(KPCA)方法分别建立动态核PCA模型,然后根据各批次模型间载荷的相似性采用分层次聚类方法进行聚类,最后将聚在一起的批次数据进行展开重新再建立动态核PCA模型,随着聚类数目的不同从而建立多个类模型。当在线应用时给出了多模型选择策略,以提高监测精度。将此方法应用于青霉素发酵过程的监控中,监测结果表明此方法取得了比DKPCA和MKPCA更好的监测性能。 Since weak faults induced by large fluctuations under poor initial conditions could not be effectively detected by traditional multivariate statistical monitoring methods, a novel kernel principal component analysis monitoring strategy based on multiple dynamic kernel clustering (DKCPCA) was proposed to improve weak faults detection performance for multi-stage batch processes. The proposed method firstly combined auto-regressive moving average exogenous time series model and kernel principal component analysis (KPCA). The dynamic kemel PCA model was built for each batch in each stage. Then hierarchical clustering was implemented through load matrix similarity among batch models. Finally, the batch data belonging to the same cluster were unfolded to build dynamic kernel PCA model again. The multiple models were established along with different cluster numbers. When online monitoring, multiple model selection strategy was given to improve monitoring precision. The monitoring method was applied to fault detection for benchmark of fed-batch penicillin production. The monitoring results showed that the proposed method had better performance than DKPCA and MKPCA.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第12期4905-4913,共9页 CIESC Journal
基金 国家自然科学基金项目(61272214) 辽宁工业大学青年基金项目(X201315)~~
关键词 多模型 弱故障 DKCPCA 间歇过程 青霉素发酵过程 multiple model weak fault DKCPCA batch process fed-batch penicillin production
  • 相关文献

参考文献20

  • 1Nomikos P. Detection and diagnosis of abnormal batch operations based on multi-way principal component analysis [J]. ISA Transactions, 1996, 35:259-266.
  • 2Chen H, Bakshi B R5 Goel P K. Integrated estimation of measurement error witii empirical process modeling一a hierarchical Bayes approach [J]. AIChE Journal, 2009, 55:2883-2295.
  • 3Nomikos P, Macgregor J F. Monitoring batch processes using multiway principal component analysis [J]. AIChE Journal, 1994, 40(8):1361-1375.
  • 4Nomikos P, Macgregor J F. Multi-way partial least squares in monitoring batch processes [J]. Chemometrics and Intelligent Laboratory Systems, 1995b, 30:97-108.
  • 5Dong D, Mcavoy J T. Nonlinear principal component analysis - based on principal curves and neural networks [J]. Computers & Chemical Engineering, 1996, 20:65-78.
  • 6Cao D S, Liang Y Z, Xu Q S, Hu Q N, Zhang L X,Fu G H. Exploring nonlinear relationships in chemical date using kernel-based methods [J]. Chemometrics and Intelligent Laboratory Systems, 2011, 107:106-115.
  • 7Ben I K,Liama M, Weihs C, Variable window adaptive kernel principal component analysis for nonlinear nonstationary process monitoring [J]. Computers & Industrial Engineering, 2011,61:437-466.
  • 8Yu J. Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis [J]. Industrial & Engineering Chemistry Research, 2011, SO:3390-3402.
  • 9Lee J M, Changkyoo Y, In-beum L. Fault detection of batch processes using multi-way kernel principal component analysis [J]. Computers & Chemical Engineering, 2004, 28:1837-1847.
  • 10Chen J, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models [J]. Chemical Engineering Science, 2002,57:63-75.

同被引文献24

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部