期刊文献+

非对称双稳耦合网络系统的尺度随机共振研究 被引量:5

System size stochastic resonance in asymmetric bistable coupled network systems
原文传递
导出
摘要 研究了不同周期信号调制下非对称双稳耦合网络系统的尺度随机共振问题.针对该网络系统,首先运用高斯近似和役使原理对其进行了降维,推导了其简化模型.在绝热近似条件下,利用Fokker-Planck方程分别得到了余弦信号和矩形信号调制下信噪比的解析表达式.在此基础上,研究了系统的尺度随机共振行为,并讨论了非对称性、噪声强度、周期信号的振幅和耦合系数对系统尺度随机共振的影响.结果表明,两种情形下信噪比均是系统尺度的非单调函数,说明在此网络系统中产生了共振现象. In this paper, the noise-induced dynamics is studied in an asymmetric bistable coupled network system modulated by different signals. According to the Gaussian approximation and the slaving principle, the asymmetric bistable coupled network system is reduced to a low-dimensional model with two potentials, by which the phenomenon of system size stochastic resonance is studied theoretically and numerically. Under the assumption of adiabatic limit, the expressions of signal-to-noise ratio (SNR) are found by virtue of Fokker-Planck equation with respect to cosine signal and rectangle signal, based on which the system size stochastic resonance is investigated. Further, the effects of the noise strength, the asymmetry and the amplitude of the signal on the system size stochastic resonance are well discussed. It is demonstrated that the SNR shows a non-monotonic dependence on the number of coupled systems, which is demonstrated that there is a resonance with respect to the number of coupled systems.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第22期88-95,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11272258 11102156) 陕西省青年科技新星 西北工业大学基础研究基金资助的课题~~
关键词 尺度随机共振 非对称双稳耦合网络系统 余弦信号 矩形信号 system size stochastic resonance asymmetric bistable coupled network systems cosine signal rectangle signal
  • 相关文献

参考文献48

  • 1Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453.
  • 2Fauve S, Heslot F 1983 Phys. Lett. A 97 5.
  • 3McNamara B, Wiesenfeld K, Roy R 1988 Phys. Rev. Lett. 60 2626.
  • 4Julicher F, Ajdari A, Prost J 1997 Rev. Mod. Phys. 69 1269.
  • 5Gammaitoni L, H?nggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223.
  • 6Li J H 2002 Phys. Rev. E 66 031104.
  • 7Kang Y M, Xu J X, Xie Y 2003 Phys. Rev. E 68 036123.
  • 8Wu D, Zhu S Q, Luo X Q, Wu L 2011 Phys. Rev. E 84 021102.
  • 9Wang Q Y, Perc M, Duan Z S, Chen G R 2009 Phys. Rev. E 80 026206.
  • 10Sun Z K, Yang X L, Xu W 2012 Phys. Rev. E 85 061125.

二级参考文献3

共引文献3

同被引文献45

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部